New nanostructured sorbents for desulfurization of natural gas

Review Article


Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal-oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas.


desulfurization natural gas desulfurization hydrogen sulfide sorbent amine-silica sorbent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haring H W. Industrial Gas Processing. Weinheim: Wiley-VCH, 2008, 217–238Google Scholar
  2. 2.
    George D L, Bowles E C. Shale gas measurement and associated issues.
  3. 3.
    Posey M L, Tapperson K G, Rochelle G T. A simple model for prediction of acid gas solubilities in alkanolamines. Gas Separation & Purification, 1996, 10(3): 181–186CrossRefGoogle Scholar
  4. 4.
    Pani F, Gaunand A, Richon D, Cadours R, Bouallou C. Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K. Journal of Chemical & Engineering Data, 1997, 42(5): 865–870CrossRefGoogle Scholar
  5. 5.
    Kohl A L, Nielsen R. Gas Purification. Houston: Gulf Publishing Company, 1997, 40–186CrossRefGoogle Scholar
  6. 6.
    Kikkinides E S, Sikavitsas V I, Yang R T. Natural gas desulfurization by adsorption: Feasibility and multiplicity of cyclic steady states. Industrial & Engineering Chemistry Research, 1995, 34(1): 255–262CrossRefGoogle Scholar
  7. 7.
    Yang R T. Gas Separation by Adsorption Processes. London: Imperial College Press, 1997, 201–36Google Scholar
  8. 8.
    Shah V, Quale M. Dow Chemical Company, private communications, June, 2013Google Scholar
  9. 9.
    Yang R T. Adsorbents: Fundamentals and Applications. New York: Wiley, 2003, 131–156CrossRefGoogle Scholar
  10. 10.
    Huang H Y, Yang R T, Chinn D, Munson C L. Amine grafted MCM-48 and silica xerogel as superior sorbents for acidic gas (H2S and CO2) removal from natural gas. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427–2433CrossRefGoogle Scholar
  11. 11.
    Ma X, Wang X, Song C. Molecular basket sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009, 131(16): 5777–5783CrossRefGoogle Scholar
  12. 12.
    Belmabkhout Y, Weireld G D, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir, 2009, 25(23): 13275–13278CrossRefGoogle Scholar
  13. 13.
    Xue Q, Liu Y S. Removal of minor concentration of H2S on MDEA-modified SBA-15 for gas purification. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 169–173CrossRefGoogle Scholar
  14. 14.
    Hunger B, Matysik S, Heuchel M, Geidel E, Toufar H. Adsorption of water on zeolites of different types. Journal of Thermal Analysis, 1997, 49(1): 553–565CrossRefGoogle Scholar
  15. 15.
    Tanada S, Bok K. Adsorption behavior hydrogen sulfide inside micropores of molecular sieve carbon 5A and molecular sieve zeolite 5A. Bulletin of Environmental Contamination and Toxicology, 1982, 29(5): 624–629CrossRefGoogle Scholar
  16. 16.
    Steuten B, Pasel C, Luckas M, Bathen D. Trace level adsorption of toxic sulfur compounds, carbon dioxide, and water from methane. Journal of Chemical & Engineering Data, 2013, 58(9): 2465–2473CrossRefGoogle Scholar
  17. 17.
    Bagreev A, Bandosz T J. Role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Industrial & Engineering Chemistry Research, 2002, 41(4): 672–679CrossRefGoogle Scholar
  18. 18.
    Bagreev A, Bandosz T J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Industrial & Engineering Chemistry Research, 2005, 44(3): 530–538CrossRefGoogle Scholar
  19. 19.
    Chiang H L, Tsai J H, Tsai C L, Hsu Y I C H U N. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S and CH3SH gas. Separation Science and Technology, 2000, 35(6): 903–918CrossRefGoogle Scholar
  20. 20.
    Bandosz T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of Colloid and Interface Science, 2002, 246(1): 1–20CrossRefGoogle Scholar
  21. 21.
    Hamon L, Serre C, Devic T, Loiseau T, Millange F, Ferey G, Weireld G D. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101 (Cr) metal-organic frameworks at room temperature. Journal of the American Chemical Society, 2009, 131(25): 8775–8777CrossRefGoogle Scholar
  22. 22.
    Li Y, Yang R T. Gas adsorption and storage in metal-organic framework MOF-177. Langmuir, 2007, 23(26): 12937–12944CrossRefGoogle Scholar
  23. 23.
    Wang L, Lachawiec A J Jr, Yang R T. Nanostructured adsorbents for hydrogen storage at ambient temperature: High-pressure measurements and factors influencing hydrogen spillover. RSC Advances, 2013, 3(46): 23935–23952CrossRefGoogle Scholar
  24. 24.
    Han S, Huang Y, Watanabe T, Nair S, Walton K S, Sholl D S, Carson M. MOF stability and gas adsorption as a function of exposure to water, humid air, SO2 and NO2. Microporous and Mesoporous Materials, 2013, 173: 8691CrossRefGoogle Scholar
  25. 25.
    Wang L F, Yang R T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catalysis Reviews. Science and Engineering, 2010, 52(4): 411461CrossRefGoogle Scholar
  26. 26.
    Westmoreland P R, Harrison D P. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environmental Science & Technology, 1976, 10(7): 659–661CrossRefGoogle Scholar
  27. 27.
    Xue M, Chitrakar R, Sakane K, Ooi K. Screening of adsorbents for removal of H2S at room temperature. Green Chemistry, 2003, 5(5): 529534CrossRefGoogle Scholar
  28. 28.
    Ko T, Chu H, Chaung L. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere, 2005, 58(4): 467474CrossRefGoogle Scholar
  29. 29.
    Huang C C, Chen C H, Chu S M. Effect of moisture on H2S adsorption by copper impregnated activated carbon. Journal of Hazardous Materials, 2006, 136(3): 866873CrossRefGoogle Scholar
  30. 30.
    Nguyen-Thanh D, Bandosz T J. Effect of transition-metal cations on the adsorption of H2S in modified pillared clays. Journal of Physical Chemistry B, 2003, 107(24): 5812–5817CrossRefGoogle Scholar
  31. 31.
    Garcia C L, Lercher J A. Adsorption of hydrogen sulfide on ZSM-5 zeolites. Journal of Physical Chemistry, 1992, 96(5): 2230–2235CrossRefGoogle Scholar
  32. 32.
    Gasper-Galvin L, Atimtay A T, Gupta R P. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 1998, 37(10): 4157–4166CrossRefGoogle Scholar
  33. 33.
    Kyotani T, Kawashima H, Tomita A, Palmer A, Furimsky E. Removal of H2S from hot gas in the presence of Cu-containing sorbents. Fuel, 1989, 68(1): 74–79CrossRefGoogle Scholar
  34. 34.
    Montes D, Tocuyo E, González E, Rodríguez D, Solano R, Atencio R, Ramos M A, Moronta A. Solano, Atencio R, Ramos M A, Moronta A. Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous and Mesoporous Materials, 2013, 168: 111–120CrossRefGoogle Scholar
  35. 35.
    Ayala R E, Marsh D W. Characterization and long-range reactivity of zinc ferrite in high-temperature desulfurization processes. Industrial & Engineering Chemistry Research, 1991, 30(1): 55–60CrossRefGoogle Scholar
  36. 36.
    Baird T, Denny P J, Hoyle R, Mcmonagle F, Stirling D, Tweedy J. Modified zinc-oxide absorbents for low-temperature gas desulfurization. Journal of the Chemical Society, Faraday Transactions, 1992, 88(22): 3375–3382CrossRefGoogle Scholar
  37. 37.
    Gasper-Galvin L, Atimtay A T, Gupta R P. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 1998, 37(10): 4157–4166CrossRefGoogle Scholar
  38. 38.
    Polychronopoulou K, Fierro J L G, Efstathiou A M. Novel Zn-Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental, 2005, 57(2): 125–137CrossRefGoogle Scholar
  39. 39.
    Yang H Y, Tatarchuk B. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications. AIChE Journal. American Institute of Chemical Engineers, 2010, 56(11): 2898–2904CrossRefGoogle Scholar
  40. 40.
    Israelson G. Results of testing various natural gas desulfurization adsorbents. Journal of Materials Engineering and Performance, 2004, 13(3): 282–286CrossRefGoogle Scholar
  41. 41.
    King D L, Birnbaum J C, Singh P. Sulfur removal from pipeline natural gas fuel: Application to fuel cell power generation systems. Pacific Northwest National Laboratory. Fuel Cell Seminar, Palm Springs, CA, November 18–21, 2002Google Scholar
  42. 42.
    Satokawa S, Kobayashi Y, Fujiki H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Applied Catalysis B: Environmental, 2005, 56(1–2): 51–56CrossRefGoogle Scholar
  43. 43.
    Alptekin G O. Sorbents for desulfurization of natural gas, LPG and transportation Fuels. Sixth Annual SECA Workshop, Pacific Grove, CA, April 21, 2004Google Scholar
  44. 44.
    Crespo D, Qi G, Wang Y, Yang F H, Yang R T. Superior sorbent for natural gas desulfurization. Industrial & Engineering Chemistry Research, 2008, 47(4): 1238–1244CrossRefGoogle Scholar
  45. 45.
    Lasperas M, Llorett T, Chaves L, Rodriguez I, Cauvel A, Brunel D. Amine functions linked to MCM-41-type silicas as a new class of solid base catalysts for condensation reactions. Studies in Surface Science and Catalysis, 1997, 108: 75–82CrossRefGoogle Scholar
  46. 46.
    Angeletti E, Canepa C, Martinetti G, Venturello P. Silica gel functionalized with amino groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Letters, 1988, 29(18): 2261–2264CrossRefGoogle Scholar
  47. 47.
    Burwell R L, Leal O. Modified silica-gels as selective adsorbents for sulfur-dioxide. Journal of the Chemical Society. Chemical Communications, 1974, 9(9): 342–343CrossRefGoogle Scholar
  48. 48.
    Leal O, Bolivar C, Ovalles C, Garcia J J, Espidel Y. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorganica Chimica Acta, 1995, 240(1–2): 183–189CrossRefGoogle Scholar
  49. 49.
    Choi S H, Drese J H, Jones C W. Adsorbent materials for CO2 capture from large anthropogenic point sources. ChemSusChem, 2009, 2(9): 796–854CrossRefGoogle Scholar
  50. 50.
    D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: Prospect for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082CrossRefGoogle Scholar
  51. 51.
    Bollini P, Didas S A, Jones C W. Amine-oxide hybrid materials for acid gas separations. Journal of Materials Chemistry, 2011, 21(39): 15100–15120CrossRefGoogle Scholar
  52. 52.
    Samanta A, Zhao A, Shimazu G K H, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: A review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438–1463CrossRefGoogle Scholar
  53. 53.
    Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843CrossRefGoogle Scholar
  54. 54.
    Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712CrossRefGoogle Scholar
  55. 55.
    Sayari A, Yang Y, Kruk M, Jaroniec M. Expanding the pore size of MCM-41 silicas: Use of amines as expanders in direct synthesis and postsynthesis procedures. Journal of Physical Chemistry B, 1999, 103(18): 3651–3658CrossRefGoogle Scholar
  56. 56.
    Chen Q, Fan F, Long D, Liu X, Liang X, Qiao W, Ling L. Poly (ethyleneimine)-loaded silica monolith with a hierarchical pore structure for H2S adsorptive removal. Industrial & Engineering Chemistry Research, 2010, 49(22): 11408–11414CrossRefGoogle Scholar
  57. 57.
    Wang L, Yang R T. Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. Journal of Physical Chemistry C, 2011, 115(43): 21264–21272CrossRefGoogle Scholar
  58. 58.
    Zhuravlev L T. Surface characterization of amorphous silica—A review of work from the former USSR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 74(1): 71–90CrossRefGoogle Scholar
  59. 59.
    Perry J B. Infrared study of OH and NH2 groups on the surface of a dry silica aero-gel. 1966. Journal of Physical Chemistry, 1966, 70(9): 2937–2945CrossRefGoogle Scholar
  60. 60.
    Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173(1–3): 1–38CrossRefGoogle Scholar
  61. 61.
    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chemelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552CrossRefGoogle Scholar
  62. 62.
    Cassiers K, Van Der Voort P, Vansant E F. Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. Chemical Communications, 2000, 24(24): 2489–2490CrossRefGoogle Scholar
  63. 63.
    Tian B Z, Liu X Y, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Microwave assisted template removal of siliceous porous materials. Chemical Communications, 2002, 11(11): 1186–1187CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations