Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process

  • W. WidiyastutiEmail author
  • Adhi Setiawan
  • Sugeng Winardi
  • Tantular Nurtono
  • Heru Setyawan
Research Article


The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH3)2 and (NH4)2HPO4 with a ratio of Ca/P = 1.67, in a spray pyrolysis process has been studied by computational fluid dynamics (CFD) simulation on the transfer of heat and mass from droplets to the surrounding media. The focus included the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of each component of the precursor, and a solid-state reaction that included the kinetic parameters of the precursor regarding its two components that formed the hydroxyapatite product. The rate of evaporation and the reacted fraction of the precursor both increased with temperature. The predicted average size of the hydroxyapatite particles agreed well with the experimental results. Therefore, the selected models were also suitable for predicting the average size of particles that contain two components in the precursor solution.


droplet hydroxyapatite particle CFD tubular furnace spray pyrolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ortega J, Kodas T T. Control of particle morphology during multicomponent metal oxide powder generation by spray pyrolysis. Journal of Aerosol Science, 1992, 23(Suppl. 1): S253–S256CrossRefGoogle Scholar
  2. 2.
    Okuyama K, Lenggoro I W. Preparation of nanoparticles via spray route. Chemical Engineering Science, 2003, 58(3–6): 537–547CrossRefGoogle Scholar
  3. 3.
    Jain S, Skamser D J, Kodas T T. Morphology of single-component particles produced by spray pyrolysis. Aerosol Science and Technology, 1997, 27(5): 575–590CrossRefGoogle Scholar
  4. 4.
    Reuge N, Caussat B, Joffin N, Dexpert-ghys J, Verelst M, Dexpert H. Modeling of spray pyrolysis—Why are the synthesized Y2O3 microparticles hollow? AIChE Journal, 2008, 54(2): 394–405CrossRefGoogle Scholar
  5. 5.
    Gurav A, Kodas T T, Pluym T, Xiong Y. Aerosol processing of materials. Aerosol Science and Technology, 1993, 19(4): 411–452CrossRefGoogle Scholar
  6. 6.
    Jayanthi G V, Zhang S C, Messing G L. Modeling of solid particle formation during solution aerosol thermolysis. Aerosol Science and Technology, 1993, 19(4): 478–490CrossRefGoogle Scholar
  7. 7.
    Reuge N, Caussat B. A dimensionless study of the evaporation and drying stages in spray pyrolysis. Computers & Chemical Engineering, 2007, 31(9): 1088–1099CrossRefGoogle Scholar
  8. 8.
    Widiyastuti W, Wang WN, Lenggoro IW, Iskandar F, Okuyama K. Simulation and experimental study of spray pyrolysis of polydispersed droplets. Journal of Materials Research, 2007, 22(7): 1888–1898CrossRefGoogle Scholar
  9. 9.
    Handscomb C, Kraft M, Bayly A. A new model for the drying of droplets containing suspended solids after shell formation. Chemical Engineering Science, 2009, 64(2): 228–246CrossRefGoogle Scholar
  10. 10.
    Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 2011, 7(7): 2769–2781CrossRefGoogle Scholar
  11. 11.
    Zhang L, Webster T J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 2009, 4(1): 66–80CrossRefGoogle Scholar
  12. 12.
    Cho J S, Rhee S H. Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of calcium phosphate solution containing polyethylene glycol. Journal of the European Ceramic Society, 2013, 33(2): 233–241CrossRefGoogle Scholar
  13. 13.
    An G H, Wang H J, Kim B H, Jeong Y G, Choa Y H. Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Materials Science and Engineering A, 2007, 449-451: 821–824CrossRefGoogle Scholar
  14. 14.
    Itatani K, Abe M, Umeda T, Davies I J, Koda S. Morphological and microstructural changes during the heating of spherical calcium orthophosphate agglomerates prepared by spray pyrolysis. China Particuology, 2004, 2(5): 200–206CrossRefGoogle Scholar
  15. 15.
    Trommer R M, Santos L A, Bergmann C P. Nanostructured hydroxyapatite powders produced by a flame-based technique. Materials Science and Engineering C, 2009, 29(6): 1770–1775CrossRefGoogle Scholar
  16. 16.
    Rajan R, Pandit A. Correlation to predict droplet size in ultrasonic atomization. Ultrasonics, 2001, 39(4): 235–255CrossRefGoogle Scholar
  17. 17.
    Ansys Inc. Ansys Fluent 13.0 Theory Guide. USA, 2010Google Scholar
  18. 18.
    Luijten C, Bosschaart K, van Dongen M. A new method for determining binary diffusion coefficients in dilute condensable vapors. International Journal of Heat and Mass Transfer, 1997, 40 (15): 3497–3502CrossRefGoogle Scholar
  19. 19.
    Poling B E, Prausnitz J M, O’Connel J P. The Properties of Gas and Liquids. New York: Mc. Graw-Hill Inc., 2001Google Scholar
  20. 20.
    Nešić S, Vodnik J. Kinetics of droplet evaporation. Chemical Engineering Science, 1991, 46(2): 527–537CrossRefGoogle Scholar
  21. 21.
    Jalota S, Tas A C, Bhaduri S B. Synthesis of HA-seeded TTCP (Ca4(PO4)2O) powders at 1230°C from Ca(CH3COO)2.H2O and NH4H2PO4. Journal of the American Ceramic Society, 2005, 88(12): 3353–3360CrossRefGoogle Scholar
  22. 22.
    Kissinger H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, 29(11): 1702–1706CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • W. Widiyastuti
    • 1
    Email author
  • Adhi Setiawan
    • 2
  • Sugeng Winardi
    • 1
  • Tantular Nurtono
    • 1
  • Heru Setyawan
    • 1
  1. 1.Department of Chemical Engineering, Institut Teknologi Sepuluh NopemberKampus ITS SukoliloSurabayaIndonesia
  2. 2.Politeknik Perkapalan Negeri SurabayaKampus ITS SukoliloSurabayaIndonesia

Personalised recommendations