Advertisement

Frontiers of Chemical Science and Engineering

, Volume 7, Issue 4, pp 482–489 | Cite as

Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line

  • Jacqueline ConchaEmail author
  • Caroline Weinstein
  • María Elvira Zúñiga
Research Article

Abstract

In the last years, sugar beet pectins have been the subject of several investigations involving extraction methodologies, chemical composition and functional properties. The structure of pectins, which depends on the extraction method, is decisive in their capacity to induce apoptosis on several cancer cell lines like colon, prostate and breast. In this work, sugar beet pectin extraction was performed in the following steps: lipid extraction with hexane, removal of soluble complex carbohydrates and proteins, and enzymatic treatment with amyloglucosidase, protease, and pectinase. The enzymatic treatment was carried out with Rohapect DA6L under the following conditions: 50°C, pH 4.0, 2% enzyme/substrate (E/S) ratio, 15 h, and a solid to liquid ratio of 1 : 10. The pectic extract showed a degree of polymerization (DP) profile of 55.8% with DP ⩾ 7; 4.9% with DP6; 5.8% between DP2 and DP6 ; 4.7% with DP2; and 28.8% with DP1. The pectic extract was examined for its antiproliferative activity on the MCF-7 breast cancer cell line. At a concentration range of 12.5–25 mg/mL the pectic extract killed 80.6% of the cells, exhibiting a higher antiproliferative activity than 4-hydroxytamoxifen (4-OHT), a classical anticancer drug, which killed 56.5% of the cells.

Keywords

pectic extracts antiproliferative activity breast cancer enzymatic treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oosterveld A, Beldman G, Voragen A G J. Enzymatic modification of pectic polysaccharides obtained from sugar beet pulp. Carbohydrate Polymers, 2002, 48(1): 73–81CrossRefGoogle Scholar
  2. 2.
    Oosterveld A, Beldman G, Schols H, Voragen A. Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydrate Research, 2000, 328(2): 185–197CrossRefGoogle Scholar
  3. 3.
    Sun R, Hughes S. Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohydrate Polymers, 1999, 38(3): 273–281CrossRefGoogle Scholar
  4. 4.
    Schols H, Voragen G, Colquhoun I. Isolation and characterization of rhamnogalacturonan oligomers, liberated during degradation of pectic hairy regions by rhamnogalacturonase. Carbohydrate Research, 1994, 256(1): 97–111CrossRefGoogle Scholar
  5. 5.
    Schols H, Vierhuis E, Bakx E, Voragen A. Different populations of pectic hairy regions occur in apple cell walls. Carbohydrate Research, 1995, 275(2): 343–360CrossRefGoogle Scholar
  6. 6.
    Yapo B, Robert C, Etienne I, Wathelet B, Paquot M. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 2007, 100(4): 1356–1364CrossRefGoogle Scholar
  7. 7.
    Yapo B. Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Research International, 2009, 42(8): 1197–1202CrossRefGoogle Scholar
  8. 8.
    Yapo B. Pectic substances: From simple pectic polysaccharides to complex pectins-A new hypothetical model. Carbohydrate Polymers, 2011, 86(8): 373–385CrossRefGoogle Scholar
  9. 9.
    Yeoh S, Shi J, Langrish T. Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination, 2008, 218(1–3): 229–237CrossRefGoogle Scholar
  10. 10.
    Willats W, Knox J, Mikkelsen J. Pectin: New insights into an old polymer are starting to gel. Trends in Food Science & Technology, 2006, 17(3): 97–104CrossRefGoogle Scholar
  11. 11.
    Micard V, Renard C M G C, Thibault J F. Enzymatic saccharification of sugar-beet pulp. Enzyme and Microbial Technology, 1996, 19(3): 162–170CrossRefGoogle Scholar
  12. 12.
    Levigne S, Ralet M C, Thibault J F. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydrate Polymers, 2002, 49(2): 145–153CrossRefGoogle Scholar
  13. 13.
    Robert C, Emaga T, Wathelet B, Paquot M. Effect of variety and harvest date on pectin extracted from chicory roots (Cichorium intybus L.). Food Chemistry, 2008, 108(3): 1008–1018CrossRefGoogle Scholar
  14. 14.
    Schieber A, Hilt P, Streker P, Endreß H U, Rentschler C, Carle R. A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Science & Emerging Technologies, 2003, 4(1): 99–107CrossRefGoogle Scholar
  15. 15.
    Westereng B, Michaelsen T, Samuelsen A, Knutsen S. Effects of extraction conditions on the chemical structure and biological activity of white cabbage pectin. Carbohydrate Polymers, 2008, 72(1): 32–42CrossRefGoogle Scholar
  16. 16.
    Koubala B, Kansci G, Mbome L, Crépeau M J, Thibault J F, Ralet M C. Effect of extraction conditions on some physicochemical characteristics of pectins from “Améliorée” and “Mango” mango peels. Food Hydrocolloids, 2008, 22(7): 1345–1351CrossRefGoogle Scholar
  17. 17.
    Koubala B, Mbome L, Kansci G, Tchouanguep Mbiapo F, Crepeau M J, Thibault J F, Ralet M C. Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food Chemistry, 2008, 106(3): 1202–1207CrossRefGoogle Scholar
  18. 18.
    Liu Y, Shi J, Langrish T. Water-based extraction of pectin from flavedo and albedo of orange peels. Chemical Engineering Journal, 2006, 120(3): 203–209CrossRefGoogle Scholar
  19. 19.
    Rombouts F, Thibault J. Enzymic and chemical degradation and the fine structure of pectins from sugar-beet pulp. Carbohydrate Research, 1986, 154(1): 189–203CrossRefGoogle Scholar
  20. 20.
    Rombouts F, Thibault J. Feruloylated pectic substances from sugarbeet pulp. Carbohydrate Research, 1986, 154(1): 177–187CrossRefGoogle Scholar
  21. 21.
    Happi Emaga T, Ronkart S, Robert C, Wathelet B, Paquot M. Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. Food Chemistry, 2008, 108(2): 463–471CrossRefGoogle Scholar
  22. 22.
    Concha J, Zúñiga M. Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pecticoligosaccharides as a potential source for functional carbohydrates. Chemical Engineering Journal, 2012, 192: 29–36CrossRefGoogle Scholar
  23. 23.
    Claye S, Idouraine A, Weber C. Extraction and fractionation of insoluble fiber from five fiber sources. Food Chemistry, 1996, 57(2): 305–310CrossRefGoogle Scholar
  24. 24.
    Deytieux-Belleau C, Vallet A, Donèche B, Geny L. Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiology and Biochemistry, 2008, 46(7): 638–646CrossRefGoogle Scholar
  25. 25.
    Iglesias M, Lozano J E. Extraction and characterization of sunflower pectin. Journal of Food Engineering, 2004, 62(3): 215–223CrossRefGoogle Scholar
  26. 26.
    Kulkarni S, Vijayanand P. Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Science and Technology, 2010, 43(7): 1026–1031CrossRefGoogle Scholar
  27. 27.
    Liu L, Cao J, Huang J, Cai Y, Yao J. Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 2010, 101(9): 3268–3273CrossRefGoogle Scholar
  28. 28.
    Marry M, McCann M, Kolpak F, White A R, Stacey N J, Roberts K. Extraction of pectic polysaccharides from sugar-beet cell walls. Journal of the Science of Food and Agriculture, 2000, 80(1): 17–28CrossRefGoogle Scholar
  29. 29.
    Sahari M, Akbarian M A, Hamedi M. Effect of variety and acid washing method on extraction yield and quality of sunflower head pectin. Food Chemistry, 2003, 83(1): 43–47CrossRefGoogle Scholar
  30. 30.
    Singthong J, Ningsanond S, Cui S, Goff H. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 2005, 19(5): 793–801CrossRefGoogle Scholar
  31. 31.
    Zykwinska A, Boiffard M, Kontkanen H, Buchert J, Thibault J F, Bonnin E. Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. Journal of Agricultural and Food Chemistry, 2008, 56(19): 8926–8935CrossRefGoogle Scholar
  32. 32.
    Zykwinska A, Rondeau-Mouro C, Garnier C, Thibault J, Ralet M. Alkaline extractability of pectic arabinan and galactan and their mobility in sugar beet and potato cell walls. Carbohydrate Polymers, 2006, 65(4): 510–520CrossRefGoogle Scholar
  33. 33.
    Zykwinska A, Gaillard C, Boiffard M, Thibault J F, Bonnin E. “Green labelled” pectins with gelling and emulsifying properties can be extracted by enzymatic way from unexploited sources. Food Hydrocolloids, 2009, 23(8): 2468–2477CrossRefGoogle Scholar
  34. 34.
    Sathisha U, Jayaram S, Harish Nayaka M, Dharmesh S. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources. Glycoconjugate Journal, 2007, 24(8): 497–507CrossRefGoogle Scholar
  35. 35.
    Jackson C, Dreaden T, Theobald L, Tran NM, Beal T L, Eid M, Gao M Y, Shirley R B, Stoffel M T, Kumar M V, Mohnen D. Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology, 2007, 17(8): 805–819CrossRefGoogle Scholar
  36. 36.
    Maxwell E, Belshaw N, Waldron K, Morris V. Pectin-An emerging new bioactive food polysaccharide. Trends in Food Science & Technology, 2012, 24(2): 64–73CrossRefGoogle Scholar
  37. 37.
    Kidd P. A new approach to metastatic cancer prevention: Modified citrus pectin (MCP), an unique pectin that blocks cell surface lectins. Alternative Medicine Review, 1996, 1(1): 4–10Google Scholar
  38. 38.
    Davis C, Milner J. Gastrointestinal microflora, food components and colon cancer prevention. Journal of Nutritional Biochemistry, 2009, 20(10): 743–752CrossRefGoogle Scholar
  39. 39.
    Glinskii O V, Huxley V H, Glinsky G V, Pienta K J, Raz A, Glinsky V V. Mechanical Entrapment is insufficient and intercellular adhesion is essential for metastasic cell arrest in distant organs. Neoplasia (New York, N.Y.), 2005, 7(5): 522–527CrossRefGoogle Scholar
  40. 40.
    Bergman M, Djaldetti M, Salman H, Bessler H. Effect of citrus pectin on malignant cell proliferation. Biomedicine and Pharmacotherapy, 2010, 64(1): 44–47CrossRefGoogle Scholar
  41. 41.
    Morra M, Cassinelli C, Cascardo G, Nagel M D, Della Volpe C, Siboni S, Maniglio D, Brugnara M, Ceccone G, Schols H A, Ulvskov P. Effects on interfacial properties and cell adhesion of surface modification by pectic hairy regions. Biomacromolecules, 2004, 5(6): 2094–2104CrossRefGoogle Scholar
  42. 42.
    Gulfi M, Arrigoni E, Amado R. Influence of structure on in vitro fermentability of commercial pectins and partially hydrolysed pectin preparations. Carbohydrate Polymers, 2005, 59(2): 247–255CrossRefGoogle Scholar
  43. 43.
    Bland E, Keshavarz T, Bucke C. The influence of small oligosaccharides on the immune system. Carbohydrate Research, 2004, 339(10): 1673–1678CrossRefGoogle Scholar
  44. 44.
    Garthoff J, Heemskerk S, Hempenius R. Safety evaluation of pectinderived acidic oligosaccharides (pAOS): genotoxicity and subchronic studies. Regulatory toxicology and pharmacology. RTP, 2010, 57(1): 31–42Google Scholar
  45. 45.
    Olano-Martin E, Gibson G, Rastell R. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. Journal of Applied Microbiology, 2002, 93(3): 505–511CrossRefGoogle Scholar
  46. 46.
    Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao T H, Neuteboom S T C, Richardson P, Palladino M A, Anderson K C. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell, 2005, 8(5): 407–419CrossRefGoogle Scholar
  47. 47.
    Favela-Torres E, Volke-Sepúlveda T, Viniegra-González G. Production of Hydrolytic Depolymerising Pectinases. Production, 2006, 44(2): 221–227Google Scholar
  48. 48.
    Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31(3): 426–428CrossRefGoogle Scholar
  49. 49.
    Dubois M, Gilles K, Hamilton J, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350–356CrossRefGoogle Scholar
  50. 50.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren J T, Bokesch H, Kenney S, Boyd M R. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J Natl Cancer Inst, 1990, 82(13): 1107–1112CrossRefGoogle Scholar
  51. 51.
    Holck J, Hjernø K, Lorentzen A, Vigsnæs L K, Hemmingsen L, Licht T R, Mikkelsen J D, Meyer A S. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochemistry, 2011, 46(5): 1039–1049CrossRefGoogle Scholar
  52. 52.
    Gnanasambandam R. Determination of pectin degree of esterification by diffuse reflectance Fourier transforms infrared spectroscopy. Food Chemistry, 2000, 68(3): 327–332CrossRefGoogle Scholar
  53. 53.
    Bermudez G. Obtencion y caracterizacion de pectinas de alto y bajo metoxilo de la manzana, variedad Pachacamac. Revista-sociedad quimica del Perú, 2003, 69(3): 155–162Google Scholar
  54. 54.
    Ovodov Y. Current views on pectin substances. Russian Journal of Bioorganic Chemistry, 2009, 35(3): 269–284CrossRefGoogle Scholar
  55. 55.
    Gullón B, Yáñez R, Alonso J, Parajó J. Production of oligosaccharides and sugars from rye straw: A kinetic approach. Bioresource Technology, 2010, 101(17): 6676–6684CrossRefGoogle Scholar
  56. 56.
    Sriamornsak P. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal, 2003, 3(1-2): 206–228Google Scholar
  57. 57.
    Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, Raz A. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. Journal of the National Cancer Institute, 2002, 94(24): 1854–1862CrossRefGoogle Scholar
  58. 58.
    Sharma B, Naresh L, Dhuldhoya N. An overview on pectins. Time processing Journals, 2006, 4: 44–51Google Scholar
  59. 59.
    Ghazarian H, Idoni B, Oppenheimer S B. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics. Acta Histochemica, 2011, 113(3): 236–247CrossRefGoogle Scholar
  60. 60.
    Glinsky V, Raz A. Modified citrus pectin anti-metastatic properties: One bullet, multiple targets. Carbohydrate Research, 2009, 344(14): 1788–1791CrossRefGoogle Scholar
  61. 61.
    Nangia-Makker P, Conklin J, Hogan V, Raz A. Carbohydratebinding proteins in cancer, and their ligands as therapeutic agents. Trends in Molecular Medicine, 2002, 8(4): 187–192CrossRefGoogle Scholar
  62. 62.
    Nakahara S, Oka N, Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis. An International Journal on Programmed Cell Death, 2005, 10(2): 267–275CrossRefGoogle Scholar
  63. 63.
    Danguy A, Camby I, Kiss R. Galectins and cancer. Biochimica et Biophysica Acta, 2002, 1572(2-3): 285–293CrossRefGoogle Scholar
  64. 64.
    Nangia-Makker P, Balan V, Raz A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenvironment. Official Journal of the International Cancer Microenvironment Society, 2008, 1(1): 43–51CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jacqueline Concha
    • 1
    Email author
  • Caroline Weinstein
    • 1
    • 3
  • María Elvira Zúñiga
    • 2
    • 3
  1. 1.Department of Biochemistry, Pharmacy SchoolUniversidad de ValparaísoPlaya Ancha, ValparaísoChile
  2. 2.School of Biochemistry EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.Creas Conicyt-Regional Gore Región de Valparaíso R12C1001ValparaísoChile

Personalised recommendations