Frontiers of Chemical Engineering in China

, Volume 3, Issue 2, pp 206–210

Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2

  • Dishun Zhao
  • Jialei Wang
  • Zhigang Zhang
  • Juan Zhang
Research Article

Abstract

The degradation of omethoate was conducted using H2O2 as oxidant, TiO2 supported on NaY zeolite as photocatalyst and a 300W lamp as light source. The effect of the calcination temperature of the photocatalyst, the amount of TiO2 loaded on NaY zeolite, the photocatalyst amount, the pH value and the radiation time on the degradation ratio of omethoate were investigated. The results show that TiO2/NaY zeolite photocatalyst prepared by sol-gel method had good photocatalysis. The photocatalytic optimum oxidation conditions of omethoate are as follows: the calcination temperature of the photocatalyst is 550°C,the amount of TiO2 loaded on NaY zeolite is 35.2 wt-%, the amount of photocatalyst is 5 g/L, pH = 8 and the radiation time is 180 min. Under these conditions, the removal ratio of omethoate is up to 93%.

Keywords

TiO2 NaY zeolite photocatalytic degradation omethoate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clive T. What they are; how they are used; how they are transported. Persistent Organic Pollutants, 2002, 26: 1–5Google Scholar
  2. 2.
    Guan W T. Correct evaluation of organophosphorus insecticides. Insecticide, 1992, 31(6): 20–23Google Scholar
  3. 3.
    Amarolli D, Arakawa N S, Carvalho D. Safety measures in the application of organophosphate insecticides on staked tomato crops using dragged hoses. Bull Environ Contam and Toxicol, 2002, 68(4): 0490–0494CrossRefGoogle Scholar
  4. 4.
    Leonard P G. Uses, benefits of organophosphate and carbamate insecticides in US crop production. NCFAP Reports, 1997, December, 1–15Google Scholar
  5. 5.
    Gao J L, Zhan F, Hou J. Study on biodegradation of omethoate and its immediate in wastewater. Henan Kexue, 1999, 17(2): 68–73 (in Chinese)Google Scholar
  6. 6.
    Purdey M. High-dose exposure to systemic phosmet insecticide modifies the phosphatidylinositol anchor on the prion protein: the origins of new variant trans44missible spongiform encephalopathies. Med Hypotheses, 1998, 50: 91–114CrossRefGoogle Scholar
  7. 7.
    Millini R, Massara P E, Perego G, et al. Framework composition of titanium silicalite-1. J Catal, 1992, 137(2): 497–503CrossRefGoogle Scholar
  8. 8.
    MohamedR M, Ismail A A, Othman I, Ibrahim I A. Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA. Journal of Molecular Catalysis A: Chemical, 2005, 238(1): 151–157CrossRefGoogle Scholar
  9. 9.
    Ismail A A, Ibrahim I A, Ahmed M S, Mohamed R M, El-Shall H. Sol-gel synthesis of titania-silica photocatalyst for cyanide photodegradation. J. of Photochemistry and Photobiology:A Chemistry, 2004, 163: 445–451CrossRefGoogle Scholar
  10. 10.
    Durgakumari V, Subrahmanyam M, Subba K V, Ratnamala A, Noorjahan M, Tanaka K. An easy and efficient use of TiO2supported HZSM-5 and TiO2+ HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Appl Catal A, 2002, 234: 155CrossRefGoogle Scholar
  11. 11.
    Tang Q W, Lin J M, Wu Z B. Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. European Polymer Journal, 2007, 43(6): 2214–2220CrossRefGoogle Scholar
  12. 12.
    Notari B. Synthesis and catalytic properties of titanium-containing zeolites. Stud Surf Sci Catal, 1988, 37: 413CrossRefGoogle Scholar
  13. 13.
    Boccuti M R, Rao K M, Zecchina A, Leofanti G, Petrini G. Spectroscopic characterization of silicalite and titanium-silicalite. Stud Surf Sci Catal, 1989, 48: 133–144CrossRefGoogle Scholar
  14. 14.
    Wang C C, Lee C K, Lyu M D, Juang L C. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes and Pigments, 2008, 76: 817–824CrossRefGoogle Scholar
  15. 15.
    Grzechulska J, Morawski A W. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Applied Catalysis B: Environmental, 2002, 36: 45–51CrossRefGoogle Scholar
  16. 16.
    Rabindranathan S, Suja D P, Yesodharan S. Photocatalytic degradation of phosphamidon on semiconductor oxides. J Hazard Mater B, 2003, 102: 217–229CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Dishun Zhao
    • 1
    • 3
  • Jialei Wang
    • 1
  • Zhigang Zhang
    • 2
  • Juan Zhang
    • 3
  1. 1.School of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangChina
  2. 2.Shijiazhuang Chaoyang Safety Evaluation Advisory Ltd.ShijiazhuangChina
  3. 3.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations