Advertisement

Frontiers of Computer Science

, Volume 12, Issue 5, pp 825–839 | Cite as

Large-scale video compression: recent advances and challenges

  • Tao Tian
  • Hanli Wang
Review Article

Abstract

The evolution of social network and multimedia technologies encourage more and more people to generate and upload visual information, which leads to the generation of large-scale video data. Therefore, preeminent compression technologies are highly desired to facilitate the storage and transmission of these tremendous video data for a wide variety of applications. In this paper, a systematic review of the recent advances for large-scale video compression (LSVC) is presented. Specifically, fast video coding algorithms and effective models to improve video compression efficiency are introduced in detail, since coding complexity and compression efficiency are two important factors to evaluate video coding approaches. Finally, the challenges and future research trends for LSVC are discussed.

Keywords

large-scale video compression fast video coding compression efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61622115 and 61472281), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (GZ2015005), and Shanghai Engineering Research Center of Industrial Vision Perception & Intelligent Computing (17DZ2251600).

Supplementary material

11704_2018_7304_MOESM1_ESM.ppt (109 kb)
Supplementary material, approximately 109 KB.

References

  1. 1.
    Wiegand T, Sullivan G J, Bjøntegaard G, Luthra A. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560–576CrossRefGoogle Scholar
  2. 2.
    Sullivan G J, Ohm J R, Han W J, Wiegand T. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649–1668CrossRefGoogle Scholar
  3. 3.
    Cherubini M, Oliveira R D, Oliver N. Understanding near-duplicate videos: a user-centric approach. In: Proceedings of ACM International Conference on Multimedia. 2009, 35–44Google Scholar
  4. 4.
    Zhao L, Fan X, Ma S, Zhao D. Fast intra-encoding algorithm for high efficiency video coding. Signal Processing: Image Communication, 2014, 29(9): 935–944Google Scholar
  5. 5.
    Cho S, Kim M. Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1555–1564CrossRefGoogle Scholar
  6. 6.
    Min B, Cheung R C C. A fast CU size decision algorithm for the HEVC intra encoder. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(5): 892–896CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Sun J, Duan Y, Guo Z. A two-stage fast CU size decision method for HEVC intracoding. In: Proceedings of International Workshop on Multimedia Signal Processing. 2015, 1–6Google Scholar
  8. 8.
    Lee D, Jeong J. Fast intra coding unit decision for high efficiency video coding based on statistical information. Signal Processing: Image Communication. 2017, 55: 121–129Google Scholar
  9. 9.
    Wang Y, Fan X, Zhao L, Ma S, Zhao D, Gao W. A fast intra coding algorithm for HEVC. In: Proceedings of IEEE International Conference on Image Processing. 2014, 4117–4121Google Scholar
  10. 10.
    Wang Y, Takagi R, Yoshitake G. A simple and fast CU division algorithm for HEVC intra prediction. IEICE Transactions on Information and Systems, 2017, 100(5): 1140–1143CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Kwong S, Zhang G, Pan Z, Yuan H, Jiang G. Low complexity HEVC intra coding for high-quality mobile video communication. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1492–1504CrossRefGoogle Scholar
  12. 12.
    Liu Z, Yu X, Gao Y, Chen S, Ji X, Wang D. CU partition mode decision for HEVC hardwired intra encoder using convolution neural network. IEEE Transactions on Image Processing, 2016, 25(11): 5088–5103MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lim K, Lee J, Kim S, Lee S. Fast PU skip and split termination algorithm for HEVC intra prediction. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(8): 1335–1346CrossRefGoogle Scholar
  14. 14.
    Hu N, Yang E H. Fast mode selection for HEVC intra-frame coding with entropy coding refinement based on a transparent composite model. IEEE Transactions on Circuits and Systems for Video Tech nology, 2015, 25(9): 1521–1532CrossRefGoogle Scholar
  15. 15.
    Na S, LeeW, Yoo K. Edge-based fast mode decision algorithm for intra prediction in HEVC. In: Proceedings of IEEE International Conference on Consumer Electronics. 2014, 11–14Google Scholar
  16. 16.
    Chen G, Liu Z, Ikenaga T, Wang D. Fast HEVC intra mode decision using matching edge detector and kernel density estimation alike histogram generation. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2013, 53–56Google Scholar
  17. 17.
    Yao Y, Li X J, Lu Y. Fast intra mode decision algorithm for HEVC based on dominant edge assent distribution. Multimedia Tools and Applications, 2015, 75(4): 1963–1981CrossRefGoogle Scholar
  18. 18.
    Shen L, Zhang Z, An P. Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Transactions on Consumer Electronics, 2013, 59(1): 207–213CrossRefGoogle Scholar
  19. 19.
    Zhang T, Sun M T, Zhao D, Gao W. Fast intra mode and CU size decision for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1714–1726CrossRefGoogle Scholar
  20. 20.
    Xiong J, Li H, Meng F, Wu Q, Ngan K N. Fast HEVC inter CU decision based on latent SAD estimation. IEEE Transactions on Multimedia, 2015, 17(12): 2147–2159CrossRefGoogle Scholar
  21. 21.
    Shen L, Liu Z, Zhang X, ZhaoW, Zhang Z. An effective CU size decision method for HEVC encoders. IEEE Transactions on Multimedia, 2013, 15(2): 465–470CrossRefGoogle Scholar
  22. 22.
    Pan Z, Kwong S, Zhang Y, Lei J, Yuan H. Fast coding tree unit depth decision for high efficiency video coding. In: Proceedings of IEEE International Conference on Image Processing. 2014, 3214–3218Google Scholar
  23. 23.
    Wang H, Heng Y, Dun H. Optimal stopping theory based algorithm for coding unit size decision in HEVC. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. 2014, 1–6Google Scholar
  24. 24.
    Wu X, Wang H, Wei Z. Optimal stopping theory based fast coding tree unit decision for high efficiency video coding. In: Proceedings of Visual Communications and Image Processing. 2016, 1–4Google Scholar
  25. 25.
    Li Y, Yang G, Zhu Y, Ding X, Sun X. Adaptive inter CU depth decision for HEVC using optimal selection model and encoding parameters. IEEE Transactions on Broadcasting, 2017, 63(3): 535–546CrossRefGoogle Scholar
  26. 26.
    Zupancic I, Blasi S G, Peixoto E, Izquierdo E. Inter-prediction optimizations for video coding using adaptive coding unit visiting order. IEEE Transactions on Multimedia, 2016, 18(9): 1677–1690CrossRefGoogle Scholar
  27. 27.
    Yang J, Kim J, Won K, Lee H, Jeon B. Early skip detection for HEVC. JCT-VC document, JCTVC-G543, 2011.Google Scholar
  28. 28.
    Goswami K, Lee J H, Jang K S, Kim B G, Kwon K K. Entropy difference-based early skip detection technique for high-efficiency video coding. Journal of Real-Time Image Processing, 2016, 12(2): 237–245CrossRefGoogle Scholar
  29. 29.
    Lee H, Shim H J, Park Y, Jeon B. Early skip mode decision for HEVC encoder with emphasis on coding quality. IEEE Transactions on Broadcasting, 2015, 61(3): 388–397CrossRefGoogle Scholar
  30. 30.
    Li Y, Yang G, Zhu Y, Ding X, Sun X. Unimodal stopping model based early SKIP mode decision for high efficiency video coding. IEEE Transactions on Multimedia, 2017, 19(7): 1431–1441CrossRefGoogle Scholar
  31. 31.
    Shen L, Zhang Z, Liu Z. Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(10): 1709–1722CrossRefGoogle Scholar
  32. 32.
    Zhang J, Li B, Li H. An efficient fast mode decision method for inter prediction in HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(8): 1502–1515CrossRefGoogle Scholar
  33. 33.
    Jung S H, Park H W. A fast mode decision method in HEVC using adaptive ordering of modes. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(10): 1846–1858CrossRefGoogle Scholar
  34. 34.
    Ahn S, Lee B, Kim M. A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3): 422–435CrossRefGoogle Scholar
  35. 35.
    Chen F, Li P, Peng Z, Jiang G, Yu M, Shao F. A fast inter coding algorithm for HEVC based on texture and motion quad-tree models. Signal Processing: Image Communication, 2016, 47: 271–279Google Scholar
  36. 36.
    Kim H S, Park R H. Fast CU partitioning algorithm for HEVC using an online-learning-based bayesian decision rule. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 130–138CrossRefGoogle Scholar
  37. 37.
    Correa G, Assuncao P A, Agostini L V, Silva Cruz L A. Fast HEVC encoding decisions using data mining. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(4): 660–673CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Kwong S, Wang X, Yuan H, Pan Z, Xu L. Machine learning-based coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Transactions on Image Processing, 2015, 24(7): 2225–2238MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhu L, Zhang Y, Pan Z, Wang R, Kwong S, Peng Z. Binary and multiclass learning based low complexity optimization for HEVC encoding. IEEE Transactions on Broadcasting, 2017, 63(3): 547–561CrossRefGoogle Scholar
  40. 40.
    Kim I K, McCann K, Sugimoto K, Han W J. High efficiency video coding (HEVC) test model 10 encoder description. JCT-VC, Doc. JCTVC-L1002, 2013Google Scholar
  41. 41.
    Zhao L, Tian Y, Huang T. Background-foreground division based search for motion estimation in surveillance video coding. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2014, 1–6Google Scholar
  42. 42.
    Zhu W, Ding W, Xu J, Shi Y, Yin B. Hash-based block matching for screen content coding. IEEE Transactions on Multimedia, 2015, 17(7): 935–944CrossRefGoogle Scholar
  43. 43.
    Gao L, Dong S, Wang W, Wang R, Gao W. A novel integer-pixel motion estimation algorithm based on quadratic prediction. In: Proceedings of IEEE International Conference on Image Processing. 2015, 2810–2814Google Scholar
  44. 44.
    Chen K, Sun J, Guo Z, Zhao D. A novel two-step integer-pixel motion estimation algorithm for HEVC encoding on a GPU. In: Proceedings of International Conference on Multimedia Modeling. 2017, 28–36CrossRefGoogle Scholar
  45. 45.
    Liao Z T, Shen C A. A novel search window selection scheme for the motion estimation of HEVC systems. In: Proceedings of International SoC Design Conference. 2015, 267–268Google Scholar
  46. 46.
    Li Y, Liu Y, Yang H, Yang D. An adaptive search range method for HEVC with the k-nearest neighbor algorithm. In: Proceedings of Visual Communications and Image Processing. 2015, 1–4Google Scholar
  47. 47.
    Pan Z, Lei J, Zhang Y, Sun X, Kwong S. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Transactions on Broadcasting, 2016, 62(3): 675–684CrossRefGoogle Scholar
  48. 48.
    Fan R, Zhang Y, Li B. Motion classification-based fast motion estimation for high-efficiency video coding. IEEE Transactions on Multimedia, 2017, 19(5): 893–907CrossRefGoogle Scholar
  49. 49.
    Lim D B, Choi Y K, Lee H J, Chae S I. A fast fractional motion estimation algorithm for high efficiency video coding. In: Proceedings of International Conference on Electronics, Information, and Communications. 2016, 1–4Google Scholar
  50. 50.
    Jia S, Ding W, Shi Y, Yin B. A fast sub-pixel motion estimation algorithm for HEVC. IEEE International Symposium on Circuits and Systems. 2016, 566–569Google Scholar
  51. 51.
    Zhang Y, Kwong S, Jiang G, Wang H. Efficient multi-reference frame selection algorithm for hierarchical B pictures in multiview video coding. IEEE Transactions on Broadcasting, 2011, 57(1): 15–23CrossRefGoogle Scholar
  52. 52.
    Liu Z, Li L, Song Y, Li S, Goto S, Ikenaga T. Motion feature and hadamard coefficient-based fast multiple reference frame motion estimation for H.264. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(5): 620–632CrossRefGoogle Scholar
  53. 53.
    Wang S, Ma S, Wang S, Zhao D, Gao W. Fast multi reference frame motion estimation for high efficiency video coding. In: Proceedings of IEEE International Conference on Image Processing. 2013, 2005–2009Google Scholar
  54. 54.
    Yang S H, Huang K S. HEVC fast reference picture selection. Electronics Letters, 2015, 51(25): 2109–2111CrossRefGoogle Scholar
  55. 55.
    Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S. Fast reference frame selection based on content similarity for low complexity HEVC encoder. Journal of Visual Communication and Image Representation, 2016, 40: 516–524CrossRefGoogle Scholar
  56. 56.
    Teng S W, Hang H M, Chen Y F. Fast mode decision algorithm for residual quadtree coding in HEVC. In: Proceedings of IEEE Visual Communications and Image Processing. 2011, 1–4Google Scholar
  57. 57.
    Shen L, Zhang Z, Zhang X, An P, Liu Z. Fast TU size decision algorithm for HEVC encoders using Bayesian theorem detection. Signal Processing: Image Communication, 2015, 32: 121–128CrossRefGoogle Scholar
  58. 58.
    Wu X, Wang H, Wei Z. Bayesian rule based fast TU depth decision algorithm for high efficiency video coding. In: Proceedings of IEEE Visual Communications and Image Processing. 2016, 1–4Google Scholar
  59. 59.
    Wang H, Kwong S. Prediction of zero quantized DCT coefficients in H.264/AVC using hadamard transformed information. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(4): 510–515CrossRefGoogle Scholar
  60. 60.
    Wang H, Kwong S. Hybrid model to detect zero quantized DCT coefficients in H.264. IEEE Transactions on Multimedia, 2007, 9(4): 728–735CrossRefGoogle Scholar
  61. 61.
    Wang H, Du H, Wu J. Predicting zero coefficients for high efficiency video coding. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2014, 1–6Google Scholar
  62. 62.
    Wang H, Du H, Lin W, Kwong S, Au O C, Wu J, Wei Z. Early detection of all-zero 4 × 4 blocks in High Efficiency Video Coding. Journal of Visual Communication and Image Representation, 2014, 25(7): 1784–1790CrossRefGoogle Scholar
  63. 63.
    Lee B, Jung J, Kim M. An all-zero block detection scheme for low-complexity HEVC encoders. IEEE Transactions on Multimedia, 2016, 18(7): 1257–1268CrossRefGoogle Scholar
  64. 64.
    Au O C, Li S, Zou R, Dai W, Sun L. Digital photo album compression based on global motion compensation and intra/inter prediction. In: Proceedings of International Conference on Audio, Language and Image Processing. 2012, 84–90Google Scholar
  65. 65.
    Zou R, Au O C, Zhou G, Dai W, Hu W, Wan P. Personal photo album compression and management. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2013, 1428–1431Google Scholar
  66. 66.
    Ling Y, Au O C, Zou R, Pang J, Yang H, Zheng A. Photo album compression by leveraging temporal-spatial correlations and HEVC. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2014, 1917–1920Google Scholar
  67. 67.
    Shi Z, Sun X, Wu F. Photo album compression for cloud storage using local features. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4(1): 17–28CrossRefGoogle Scholar
  68. 68.
    Wu H, Sun X, Yang J, Zeng W, Wu F. Lossless compression of JPEG coded photo collections. IEEE Transactions on Image Processing, 2016, 25(6): 2684–2696MathSciNetCrossRefGoogle Scholar
  69. 69.
    Vetro A, Wiegand T, Sullivan G J. Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE, 2011, 99(4): 626–642.CrossRefGoogle Scholar
  70. 70.
    Merkle P, Smoli´c A, M¨uller K, Wiegand T. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(11): 1461–1473CrossRefGoogle Scholar
  71. 71.
    Wang H, Ma M, Jiang Y G, Wei Z. A framework of video coding for compressing near-duplicate videos. In: Proceedings of International Conference on Multimedia Modeling. 2014, 518–528CrossRefGoogle Scholar
  72. 72.
    Wang H, Ma M, Tian T. Effectively compressing near-duplicate videos in a joint way. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2015, 1–6Google Scholar
  73. 73.
    Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417Google Scholar
  74. 74.
    Muja M, Lowe D G. Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2227–2240CrossRefGoogle Scholar
  75. 75.
    Fishler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395MathSciNetCrossRefGoogle Scholar
  76. 76.
    Wang H, Tian T, Ma M, Wu J. Joint compression of near-duplicate videos. IEEE Transactions on Multimedia, 2017, 19(5): 908–920CrossRefGoogle Scholar
  77. 77.
    Wu X, Ngo CW, Hauptmann A G, Tan H K. Real-time near-duplicate elimination for web video search with content and context. IEEE Transactions on Multimedia, 2009, 11(2): 196–207CrossRefGoogle Scholar
  78. 78.
    Wang H, Zhu F, Xiao B, Wang L, Jiang Y G. Gpu-based map-reduce for large-scale near-duplicate video retrieval. Multimedia Tools and Applications, 2015, 74(23): 10515–10534.CrossRefGoogle Scholar
  79. 79.
    Gao Y, Zhu C, Li S, Yang T. Temporal dependent rate-distortion optimization for low-delay hierarchical video coding. IEEE Transactions on Image Processing, 2017, 26(9): 4457–4470.MathSciNetCrossRefGoogle Scholar
  80. 80.
    Chen H, Zhang T, Sun M T, Saxena A, Budagavi M. Improving intra prediction in high-efficiency video coding. IEEE Transactions on Image Processing, 2016, 25(8): 3671–3682MathSciNetCrossRefGoogle Scholar
  81. 81.
    Lan C, Xu J, Shi G, Wu F. Variable block-sized signal dependent transform for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2689032Google Scholar
  82. 82.
    Li L, Li H, Liu D, Li Z, Yang H, Lin S, Chen H, Wu F. An efficient four-parameter affine motion model for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2699919Google Scholar
  83. 83.
    Ma S, Zhang X, Zhang J, Jia C, Wang S, Gao W. Nonlocal in-loop filter: the way toward next-generation video coding?. IEEEMultiMedia, 2016, 23(2): 16–26Google Scholar
  84. 84.
    Chen J, Chen Y, Karczewicz M, Li X, Liu H, Zhang L, Zhao X. Coding tools investigation for next generation video coding. ITU-T SG16 Doc. COM16-C806, 2015Google Scholar
  85. 85.
    Karczewicz M, Chen J, Chien W J, Li X, Said A, Zhang L, Zhao X. Study of coding efficiency improvements beyond HEVC.MPEG Doc. m37102, 2015Google Scholar
  86. 86.
    An J, Huang H, Zhang K. Quadtree plus binary tree structure integration with JEM tools. Joint Video Exploration Team, JVET-B0023, 2016Google Scholar
  87. 87.
    Chen J, Chien W J, Karczewicz M, Li X, Liu H, Said A, Zhang L, Zhao X. Further improvements to HMKTA-1.0. ITU-T SG16/Q6 Doc. VCEG-AZ07, 2015Google Scholar
  88. 88.
    Alshina E, Alshin A, Min J H, Choi K, Saxena A, Budagavi M. Known tools performance investigation for next generation video coding. ITU-T SG16/Q6 Doc. VCEG-AZ05, 2015Google Scholar
  89. 89.
    Chien W J, Karczewicz M. Extension of advanced temporal motion vector predictor. ITU-T SG16/Q6 Doc. VCEG-AZ10, 2015Google Scholar
  90. 90.
    Choi K, Alshina E, Alshin A, Kim C. Information on coding efficiency improvements over HEVC for 4K content. MPEG Doc. m37043, 2015Google Scholar
  91. 91.
    Martin E. Saccadic suppression: a review and an analysis. Psychological Bulletin, 1974, 81(12): 899–917CrossRefGoogle Scholar
  92. 92.
    Itti L, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259CrossRefGoogle Scholar
  93. 93.
    Gao D, Mahadevan V, Vasoncelos N. The discriminant center-surround hypothesis for bottom-up saliency. In: Proceedings of Advances in Neural Information Processing Systems. 2007, 497–504Google Scholar
  94. 94.
    Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926CrossRefGoogle Scholar
  95. 95.
    Imamoglu N, Lin W, Fang Y. A saliency detection model using lowlevel features based on wavelet transform. IEEE Transactions onMultimedia, 2013, 15(1): 96–105CrossRefGoogle Scholar
  96. 96.
    Hadizadeh H, Bajic I V. Saliency-aware video compression. IEEE Transactions on Image Processing, 2014, 23(1): 19–33MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Li Y, Liao W, Huang J, He D, Chen Z. Saliency based perceptual HEVC. In: Proceedings of IEEE International Conference on Multimedia and Expo Workshops. 2014, 1–5Google Scholar
  98. 98.
    Doulamis N, Doulamis A, Kalogeras D, Kollias S. Low bit-rate coding of image sequences using adaptive regions of interest. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(8): 928–934CrossRefGoogle Scholar
  99. 99.
    Xu M, Deng X, Li S, Wang Z. Region-of-interest based conversational HEVC coding with hierarchical perception model of face. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3): 475–489CrossRefGoogle Scholar
  100. 100.
    Yang X, Lin W, Lu Z, Ong E, Yao S. Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(6): 742–752CrossRefGoogle Scholar
  101. 101.
    Liu A, Lin W, Paul M, Deng C, Zhang F. Just noticeable difference for images with decomposition model for separating edge and textured regions. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1648–1652CrossRefGoogle Scholar
  102. 102.
    Wu J, Shi G, LinW, Liu A, Qi F. Just noticeable difference estimation for images with free-energy principle. IEEE Transactions on Multimedia, 2013, 15(7): 1705–1710CrossRefGoogle Scholar
  103. 103.
    Wu J, Li L, Dong W, Shi G, Lin W, Kuo C C J. Enhanced just noticeable difference model for images with pattern complexity. IEEE Transactions on Image Processing, 2017, 26(6): 2682–2693MathSciNetCrossRefGoogle Scholar
  104. 104.
    Ahumada A, Peterson H. Luminance-model-based DCT quantization for color image compression. Proceedings of the SPIE, 1992, 1666: 365–374CrossRefGoogle Scholar
  105. 105.
    Hontsch I, Karam L J. Adaptive image coding with perceptual distortion control. IEEE Transactions on Image Processing, 2002, 11(3): 213–222CrossRefGoogle Scholar
  106. 106.
    Wei Z, Ngan K N. Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(3): 337–346CrossRefGoogle Scholar
  107. 107.
    Hu S, Wang H, Kuo C C J. A GMM-based stair quality model for human perceived JPEG images. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2016, 1070–1074Google Scholar
  108. 108.
    Jin L, Yuchieh L J, Hu S, Wang H, Wang P, Katsavounidis I, Aaron A, Kuo C C J. Statistical study on perceived JPEG image quality via MCL-JCI dataset construction and analysis. Electronic Imaging, 2016, 9: 1–9Google Scholar
  109. 109.
    Chen Z, Guillemot C. Perceptually-friendly H.264/AVC video coding based on foveated just-noticeable-distortion model. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(6): 806–819CrossRefGoogle Scholar
  110. 110.
    Luo Z, Song L, Zheng S, Ling N. H.264/advanced video control perceptual optimization coding based on JND-directed coefficient suppression. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(6): 935–948CrossRefGoogle Scholar
  111. 111.
    Yang X K, Ling W S, Lu Z K, Ong E P, Yao S S. Just noticeable distortion model and its applications in video coding. Signal Processing: Image Communication, 2005, 20(7): 662–680Google Scholar
  112. 112.
    Kim J, Bae S H, Kim M. An HEVC-compliant perceptual video coding scheme based on JND models for variable block-sized transform kernels. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(11): 1786–1800CrossRefGoogle Scholar
  113. 113.
    Abdoli M, Henry F, Brault P, Duhamel P, Dufaux F. Intra prediction using in-loop residual coding for the post-HEVC standard. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing. 2017, 1–6Google Scholar
  114. 114.
    Wang H, Fu J, Lin W, Hu S, Kuo C C J, Zuo L. Image quality assessment based on local linear lnformation and distortion-specific compensation. IEEE Transactions on Image Processing, 2017, 26(2): 915–926MathSciNetCrossRefGoogle Scholar
  115. 115.
    Wang T, Chen M, Chao H. A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC. In: Proceedings of Data Compression Conference. 2017, 410–419Google Scholar
  116. 116.
    Li Y, Liu D, Li H, Li L, Wu F, Zhang H, Yang H. Convolutional neural network-based block up-sampling for intra frame coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2727682Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyTongji UniversityShanghaiChina
  2. 2.Key Laboratory of Embedded System and Service Computing, Ministry of EducationTongji UniversityShanghaiChina
  3. 3.Shanghai Engineering Research Center of Industrial Vision Perception & Intelligent ComputingShanghaiChina

Personalised recommendations