Advertisement

Frontiers of Computer Science

, Volume 12, Issue 5, pp 1035–1037 | Cite as

GL-RF: a reconciliation framework for label-free entity resolution

  • Yaoli Xu
  • Zhanhuai Li
  • Qun Chen
  • Fengfeng Fan
Letter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Murtadha Ahmed, Yiyi Li, Ping Zhong, YanyanWang, and Jing Su for their invaluable suggestions. This work was supported by the Ministry of Science and Technology of China, National Key Research and Development Program (2016YFB1000703), and the National Natural Science Foundation of China (Grant Nos. 61732014, 61332006, 61472321, 61502390, and 61672432).

Supplementary material

11704_2018_7285_MOESM1_ESM.ppt (265 kb)
Supplementary material, approximately 265 KB.

References

  1. 1.
    Konda P, Das S, Suganthan G C P, Doan A, Ardalan A, Ballard J R, Li H, Panahi F, Zhang H J, Naughton J F, Prasad S, Krishnan G, Deep R, Raghavendra V. Magellan: toward building entity matching management systems. Proceedings of the VLDB Endowment, 2016, 9(12): 1197–1208CrossRefGoogle Scholar
  2. 2.
    Li L L, Li J Z, Gao H. Rule-based method for entity resolution. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 250–263CrossRefGoogle Scholar
  3. 3.
    Fan F F, Li Z H, Chen Q, Liu H L. An outlier-detection based approach for automatic entity matching. Chinese Journal of Computers, 2017, 40(10): 2197–2211MathSciNetGoogle Scholar
  4. 4.
    Guha S, Koudas N, Marathe A, Srivastava D. Merging the results of approximate match operations. In: Proceedings of the 30th International Conference on Very Large Data Bases. 2004, 636–647Google Scholar
  5. 5.
    Dey D, Sarkar S, De P. Entity matching in heterogeneous databases: a distance based decision model. In: Proceedings of the 31st Annual Hawaii International Conference on System Sciences. 1998, 305–313Google Scholar
  6. 6.
    Rajaraman A, Ullman J D. Mining of Massive Datasets. Cambridge: Cambridge University Press, 2011CrossRefGoogle Scholar
  7. 7.
    Schölkopf B, Platt J C, Shawe-Taylor J, Smola A J, Williamson R C. Estimating the support of a high-dimensional distribution. Neural Computation, 2001, 13(7): 1443–1471CrossRefzbMATHGoogle Scholar
  8. 8.
    Papadakis G, Koutrika G, Palpanas T, Nejdl W. Meta-blocking: taking entity resolution to the next level. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1946–1960CrossRefGoogle Scholar
  9. 9.
    Christen P. Febrl: a freely available record linkage system with a graphical user interface. In: Proceedings of the 2nd Australasian Workshop on Health Data and Knowledge Management. 2008, 17–25Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaoli Xu
    • 1
    • 2
  • Zhanhuai Li
    • 1
    • 2
  • Qun Chen
    • 1
    • 2
  • Fengfeng Fan
    • 1
    • 2
  1. 1.School of Computer Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Key Laboratory of Big Data Storage and ManagementNorthwestern Polytechnical University, Ministry of Industry and Information TechnologyXi’anChina

Personalised recommendations