Advertisement

Frontiers of Computer Science

, Volume 10, Issue 5, pp 889–907 | Cite as

The power of comments: fostering social interactions in microblog networks

  • Tianyi Wang
  • Yang ChenEmail author
  • Yi Wang
  • Bolun Wang
  • Gang Wang
  • Xing Li
  • Haitao Zheng
  • Ben Y. Zhao
Research Article

Abstract

Today’s ubiquitous online social networks serve multiple purposes, including social communication (Facebook, Renren), and news dissemination (Twitter). But how does a social network’s design define its functionality? Answering this would need social network providers to take a proactive role in defining and guiding user behavior.

In this paper, we first take a step to answer this question with a data-driven approach, through measurement and analysis of the Sina Weibo microblogging service. Often compared to Twitter because of its format,Weibo is interesting for our analysis because it serves as a social communication tool and a platform for news dissemination, too. While similar to Twitter in functionality, Weibo provides a distinguishing feature, comments, allowing users to form threaded conversations around a single tweet. Our study focuses on this feature, and how it contributes to interactions and improves social engagement.We use analysis of comment interactions to uncover their role in social interactivity, and use comment graphs to demonstrate the structure of Weibo users interactions. Finally, we present a case study that shows the impact of comments in malicious user detection, a key application on microblogging systems. That is, using properties of comments significantly improves the accuracy in both modeling Received May 20, 2015; accepted October 29, 2015 E-mail: chenyang@fudan.edu.cn and detection of malicious users.

Keywords

microblogs comments social and interaction graph user behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11704_2016_5198_MOESM1_ESM.ppt (414 kb)
Supplementary material, approximately 413 KB.

References

  1. 1.
    Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web. 2010, 591–600Google Scholar
  2. 2.
    Gao Q, Abel F, Houben G J, Yu Y. A comparative study of user’s microblogging behavior on Sina Weibo and Twitter. In: Proceedings of the 20th Conference on User Modeling, Adaptation, and Personalization. 2012, 88–101CrossRefGoogle Scholar
  3. 3.
    Jiang J, Wilson C, Wang X, Sha WP, Huang P, Dai Y F, Zhao B Y. Understanding latent interactions in online social networks. ACM Transactions on the Web (TWEB), 2013, 7(4): 18Google Scholar
  4. 4.
    Gjoka M, Kurant M, Butts C T, Markopoulou A. Practical recommendations on crawling online social networks. IEEE Journal on Selected Areas in Communications, 2011, 29(9): 1872–1892CrossRefGoogle Scholar
  5. 5.
    Ribeiro B, Towsley D. Estimating and sampling graphs with multidimensional random walks. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. 2010, 390–403Google Scholar
  6. 6.
    Wilson C, Boe B, Sala A, Puttaswamy K P N, Zhao B Y. User interactions in social networks and their implications. In: Proceedings of the 4th ACM European Conference on Computer Systems. 2009, 205–218Google Scholar
  7. 7.
    Gao Q, Abel F, Houben G J, Yu Y. Information propagation cultures on Sina Weibo and Twitter. In: Proceedings of the 4th Annual ACM Web Science Conference. 2012, 157–162Google Scholar
  8. 8.
    Fu K, Chau M. Reality check for the Chinese microblog space: a random sampling approach. PloS one, 2013, 8(3): e58356CrossRefGoogle Scholar
  9. 9.
    Liao Q Y, Shi L. She gets a sports car from our donation: rumor transmission in a Chinese microblogging community. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work. 2013, 587–598Google Scholar
  10. 10.
    Guo Z D, Huang J, He J, Hei X J, Wu D. Unveiling the patterns of video tweeting: a Sina Weibo-based measurement study. In: Proceedings of Passive and Active Measurement. 2013, 166–175Google Scholar
  11. 11.
    Chen L, Zhang C, Wilson C. Tweeting under pressure: analyzing trending topics and evolving word choice on Sina Weibo. In: Proceedings of the 1st ACM Conference on Online Social Networks. 2013, 89–100CrossRefGoogle Scholar
  12. 12.
    Sala A, Zheng H T, Zhao B Y, Gaito S, Rossi G P. Brief announcement: revisiting the power-law degree distribution for social graph analysis. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. 2010, 400–401CrossRefGoogle Scholar
  13. 13.
    Clauset A, Shalizi C R, Newman M E J. Power-law distributions in empirical data. SIAM Review, 2009, 51(4): 661–703MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Java A, Song X D, Finin T, Tseng B. Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis. 2007, 56–65CrossRefGoogle Scholar
  15. 15.
    Chun H, Kwak H, Eom Y H, Ahn Y Y, Moon S, Jeong H. Comparison of online social relations in volume vs interaction: a case study of cyworld. In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement. 2008, 57–70CrossRefGoogle Scholar
  16. 16.
    Viswanath B, Mislove A, Cha M, Gummadi K P. On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks. 2009, 37–42CrossRefGoogle Scholar
  17. 17.
    Benevenuto F, Rodrigues T, Cha M, Almeida V. Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference. 2009, 49–62CrossRefGoogle Scholar
  18. 18.
    Schneider F, Feldmann A, Krishnamurthy B, Willinger W. Understanding online social network usage from a network perspective. In: Proceedings of the 9th ACMSIGCOMMConference on Internet Measurement Conference. 2009, 35–48Google Scholar
  19. 19.
    Xu T Y, Chen Y, Jiao L, Zhao B Y, Hui P, Fu X M. Scaling microblogging services with divergent traffic demands. In: Proceedings of the 12th International Middleware Conference. 2011, 20–39Google Scholar
  20. 20.
    Mislove A, Marcon M, Gummadi K P, Druschel P, Bhattacharjee B. Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. 2007, 29–42CrossRefGoogle Scholar
  21. 21.
    Dunbar R I M. Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 1992, 22(6): 469–493MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dunbar R I M. The social brain hypothesis. Foundations in Social Neuroscience, 2002, 5(71): 69Google Scholar
  23. 23.
    Watts D J, Strogatz S H. Collective dynamics of “small-world” networks. Nature, 1998, 393(6684): 440–442CrossRefGoogle Scholar
  24. 24.
    Zhao X H, Chang A, Sarma A D, Zheng H T, Zhao B Y. On the embeddability of random walk distances. VLDB Endowment, 2013, 6(14): 1690–1701CrossRefGoogle Scholar
  25. 25.
    Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019–1031CrossRefGoogle Scholar
  26. 26.
    Hirsch J E. An index to quantify an individual’s scientific research output. National Academy of Sciences of the United States of America, 2005, 102(46): 16569–16572CrossRefGoogle Scholar
  27. 27.
    Benevenuto F, Magno G, Rodrigues T, Almeida V. Detecting spammers on Twitter. In: Proceedings of Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference. 2010, 12Google Scholar
  28. 28.
    Wang A H. Don’t follow me: spam detection in Twitter. In: Proceedings of the 2010 International Conference on Security and Cryptography. 2010, 1–10Google Scholar
  29. 29.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I H. The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 2009, 11(1): 10–18CrossRefGoogle Scholar
  30. 30.
    Lewis D D. Naive (Bayes) at forty: the independence assumption in information retrieval. In: Proceedings of the 10th European Conference on Machine Learning. 1998, 4–15Google Scholar
  31. 31.
    Chang C C, Lin C J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27CrossRefGoogle Scholar
  32. 32.
    Breiman L. Random forests. Machine Learning, 2001, 45(1): 5–32MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Le Cessie S, Van Houwelingen J C. Ridge estimators in logistic regression. Applied Statistics, 1992, 191–201Google Scholar
  34. 34.
    Billsus D, Pazzani M J. Learning collaborative information filters. In: Proceedings of International Conference on Machine Learning. 1998, 46–54Google Scholar
  35. 35.
    Yang Y M, Pedersen J O. A comparative study on feature selection in text categorization. In: Proceedings of International Conference on Machine Learning. 1997, 412–420Google Scholar
  36. 36.
    Wang G, Wilson C, Zhao X H, Zhu Y B, Mohanlal M, Zheng H T, Zhao B Y. Serf and turf: crowdturfing for fun and profit. In: Proceedings of the 21st International Conference on World Wide Web. 2012, 679–688Google Scholar
  37. 37.
    Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003, 137–146Google Scholar
  38. 38.
    Leskovec J, Krause A, Guestrin C, Faloutsos C, Van Briesen J, Glance N. Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2007, 420–429CrossRefGoogle Scholar
  39. 39.
    Chen W, Wang Y J, Yang S Y. Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and DataMining. 2009, 199–208CrossRefGoogle Scholar
  40. 40.
    Goyal A, Lu W, Lakshmanan L V S. CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web. 2011, 47–48Google Scholar
  41. 41.
    Myers S A, Sharma A, Gupta P, Lin J. Information network or social network?: the structure of the Twitter follow graph. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion. 2014, 493–498Google Scholar
  42. 42.
    Yang J, Counts S. Predicting the speed, scale, and range of information diffusion in Twitter. In: Proceedings of the International AAAI Conference on Web and Social Media. 2010, 355–358Google Scholar
  43. 43.
    Lumezanu C, Feamster N, Klein H. #bias: Measuring the tweeting behavior of propagandists. In: Proceedings of the International AAAI Conference on Web and Social Media. 2012Google Scholar
  44. 44.
    Cha M, Haddadi H, Benevenuto F, Gummadi P K. Measuring user influence in Twitter: The million follower fallacy. In: Proceedings of the International AAAI Conference on Web and Social Media. 2010, 10–17Google Scholar
  45. 45.
    Bakshy E, Hofman J M, Mason W A, Watts D J. Everyone’s an influencer: quantifying influence on Twitter. In: Proceedings of the 4th ACMInternational Conference onWeb Search and DataMining. 2011, 65–74Google Scholar
  46. 46.
    Boutet A, Kim H, Yoneki E. What’s in your tweets? I know who you supported in the UK 2010 general election. In: Proceedings of the International AAAI Conference on Web and Social Media. 2012Google Scholar
  47. 47.
    Mislove A, Lehmann S, Ahn Y Y, Onnela J P, Rosenquist J N. Understanding the demographics of Twitter users. In: Proceedings of the International AAAI Conference on Web and Social Media. 2011Google Scholar
  48. 48.
    Bamman D, O’Connor B, Smith N. Censorship and deletion practices in Chinese social media. First Monday, 2012, 17(3)Google Scholar
  49. 49.
    Zhu T, Phipps D, Pridgen A, Crandall J R, Wallach D S. The velocity of censorship: high-fidelity detection of microblog post deletions. In: Proceedings of the 22nd USENIX Conference on Security. 2013, 227–240Google Scholar
  50. 50.
    Zhang J, Liu B, Tang J, Chen T, Li J. Social influence locality for modeling retweeting behaviors. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013, 2761–2767Google Scholar
  51. 51.
    Qu Y, Huang C, Zhang P Y, Zhang J. Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work. 2011, 25–34CrossRefGoogle Scholar
  52. 52.
    Yu H R, Sun G Z, Lv M. Users sleeping time analysis based on microblogging data. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. 2012, 964–968CrossRefGoogle Scholar
  53. 53.
    Yang F, Liu Y, Yu X H, Yang M. Automatic detection of rumor on Sina Weibo. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. 2012, 13Google Scholar
  54. 54.
    Macskassy S A. On the study of social interactions in Twitter. In: Proceedings of the International AAAI Conference onWeb and Social Media. 2012Google Scholar
  55. 55.
    Gao H Y, Hu J, Wilson C, Li Z C, Chen Y, Zhao B Y. Detecting and characterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. 2010, 35–47Google Scholar
  56. 56.
    Wang G, Konolige T, Wilson C, Wang X, Zheng H, Zhao B Y. You are how you click: Clickstream analysis for sybil detection. In: Proceedings of the 22nd USENIX Conference on Security. 2013, 1–15Google Scholar
  57. 57.
    Wang G, Mohanlal M, Wilson C, Wang X, Metzger M, Zheng H T, Zhao B Y. Social turing tests: crowdsourcing sybil detection. In: Proceedings of the 20th Annual Network and Distributed System Security Symposium. 2013Google Scholar
  58. 58.
    Yang Z, Wilson C, Wang X, Gao T, Zhao B Y, Dai Y. Uncovering social network sybils in the wild. ACM Transactions on Knowledge Discovery from Data, 2014, 8(1): 2CrossRefGoogle Scholar
  59. 59.
    Stringhini G, Kruegel C, Vigna G. Detecting spammers on social networks. In: Proceedings of the 26th Annual Computer Security Applications Conference. 2010, 1–9Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tianyi Wang
    • 1
    • 2
    • 3
  • Yang Chen
    • 4
    Email author
  • Yi Wang
    • 5
  • Bolun Wang
    • 3
  • Gang Wang
    • 3
  • Xing Li
    • 1
    • 2
  • Haitao Zheng
    • 3
  • Ben Y. Zhao
    • 3
  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingChina
  2. 2.Tsinghua National Laboratory for Information Science and TechnologyBeijingChina
  3. 3.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  4. 4.School of Computer ScienceFudan UniversityShanghaiChina
  5. 5.Department of MathematicsSyracuse UniversitySyracuseUSA

Personalised recommendations