Frontiers of Computer Science

, Volume 10, Issue 1, pp 2–18 | Cite as

Large-scale virtual machines provisioning in clouds: challenges and approaches

Review Article

Abstract

The scale of global data center market has been explosive in recent years. As the market grows, the demand for fast provisioning of the virtual resources to support elastic, manageable, and economical computing over the cloud becomes high. Fast provisioning of large-scale virtual machines (VMs), in particular, is critical to guarantee quality of service (QoS). In this paper, we systematically review the existing VM provisioning schemes and classify them in three main categories. We discuss the features and research status of each category, and introduce two recent solutions, VMThunder and VMThunder+, both of which can provision hundreds of VMs in seconds.

Keywords

cloud computing IaaS large scale virtual machine provisioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu X, Wang H, Wang J, Xu J, Li D. Internet-based virtual computing environment: beyond the data center as a computer. Future Generation Computer Systems, 2013, 29(1): 309–322CrossRefGoogle Scholar
  2. 2.
    Ahmed W, Wu Y. Estimation of cloud node acquisition. Tsinghua Science and Technology, 2014, 19(1): 1–12CrossRefGoogle Scholar
  3. 3.
    Mao M, Humphrey M. A performance study on the VM startup time in the cloud. In: Proceedings of IEEE International Conference on Cloud Computing (CLOUD). 2012, 423–430Google Scholar
  4. 4.
    Zhang Z, Li Z, Wu K, Li D, Li H, Peng Y, Lu X. VMThunder: fast provisioning of large-scale virtual machine clusters. IEEE Transactions on Parallel and Distributed System, 2014, 25(12): 3328–3338CrossRefGoogle Scholar
  5. 5.
    Sotomayor B, Keahey K, Foster I. Combining batch execution and leasing using virtual machines. In: Proceedings of the 17th International Symposium on High Performance Distributed Computing. 2008, 87–96Google Scholar
  6. 6.
    Sotomayor B, Montero R S, Llorente I M, Foster I. Virtual infrastructure management in private and hybrid clouds. IEEE Internet Computing, 2009, 13(5): 14–22CrossRefGoogle Scholar
  7. 7.
    Li J, Li D, Ye Y, Lu X. Efficient multi-tenant virtual machine allocation in cloud data centers. Tsinghua Science and Technology, 2015, 20(1): 81–89CrossRefGoogle Scholar
  8. 8.
    Le D, Huang H, Wang H. Understanding performance implications of nested file systems in a virtualized environment. In: Proceedings of USENIX Conference on File and Storage Technologies. 2012, 8Google Scholar
  9. 9.
    Bellard F. Qemu, a fast and portable dynamic translator. In: Proceedings of USENIX Annual Technical Conference. 2005, 41–46Google Scholar
  10. 10.
    Nicolae B, Bresnahan J, Keahey K, Antoniu G. Going back and forth: efficient multideployment and multisnapshotting on clouds. In: Proceedings of ACM Symposium on High Performance Distributed Computing. 2011, 147–158Google Scholar
  11. 11.
    Xiao W, Liu Y, Yang Q, Ren J, Xie C. Implementation and performance evaluation of two snapshot methods on iSCSI target storages. In: Proceedings of IEEE Conference on Mass Storage Systems and Technologies. 2006Google Scholar
  12. 12.
    Jayaram K R, Peng C, Zhang Z, Kim M, Chen H, Lei H. An empirical analysis of similarity in virtual machine images. In: Proceedings of the Middleware. 2011, 6Google Scholar
  13. 13.
    Peng C, Kim M, Zhang Z, Lei H. Vdn: Virtual machine image distribution network for cloud data centers. In: Proceedings of IEEE Infocom. 2012, 181–189Google Scholar
  14. 14.
    Razavi K, Ion A, Kielmann T. Squirrel: Scatter hoarding VM image contents on IaaS compute nodes. In: Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing. 2014, 265–278Google Scholar
  15. 15.
    Jin K, Miller E L. The effectiveness of deduplication on virtual machine disk images. In: Proceedings of SYSTOR. 2009, 7Google Scholar
  16. 16.
    Ng C H, Ma M, Wong T Y, Lee P P C, Lui J C S. Live deduplication storage of virtual machine images in an open-source cloud. In: Proceedings of the 12th International Middleware Conference. 2011, 80–99Google Scholar
  17. 17.
    Srinivasan K, Bisson T, Goodson G, Voruganti K. iDedup: Latencyaware, inline data deduplication for primary storage. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies. 2012, 12: 1–14Google Scholar
  18. 18.
    Ammons G, Bala V, Mummert T, Reimer D, Zhang X. Virtual machine images as structured data: the mirage image library. In: Proceedings of USENIX HotCloud. 2011Google Scholar
  19. 19.
    Reimer D, Thomas A, Ammons G, Mummert T, Alpern B, Bala V. Opening black boxes: using semantic information to combat virtual machine image sprawl. In: Proceedings of International Conference on Virtual Execution Environments. 2008, 111–120Google Scholar
  20. 20.
    Tang C. Fvd: a high-performance virtual machine image format for cloud. In: Proceedings of USENIX Annual Technical Conference. 2011Google Scholar
  21. 21.
    Papadopoulos P. Extending clusters to Amazon EC2 using the rocks toolkit. International Journal of High Performance Computing Applications, 2011, 25(3): 317–327CrossRefGoogle Scholar
  22. 22.
    Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D. The eucalyptus open-source cloud-computing system. In: Proceedings of the 9th IEEE/ACM International Symposium on CCGrid. 2009, 124–131Google Scholar
  23. 23.
    LiD, Cao J, Lu X, Chen K. Efficient range query processing in peer-topeer systems. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(1): 78–91CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Lu X, Peng Y, Li H. A reality check of multiple snowball tree file dissemination in large scale cloud cluster. In: Proceedings of the 15th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops. 2012, 76–80CrossRefGoogle Scholar
  25. 25.
    Wartel R, Cass T, Moreira B, Roche E, Guijarro M, Goasguen S, Schwickerath U. Image distribution mechanisms in large scale cloud providers. In: Proceedings of IEEE CloudCom. 2010, 112–117Google Scholar
  26. 26.
    Chen Z, Zhao Y, Miao X, Chen Y, Wang Q. Rapid provisioning of cloud infrastructure leveraging peer-to-peer networks. In: Proceedings of the 29th IEEE International Conference on Distributed Computing Systems Workshops. 2009, 324–329Google Scholar
  27. 27.
    O’Donnell C M. Using bittorrent to distribute virtual machine images for classes. In: Proceedings of the 36th Annual ACM SIGUCCS Fall Conference: Moving Mountains, Blazing Trails. 2008, 287–290Google Scholar
  28. 28.
    Reich J, Laadan O, Brosh E, Sherman A, Misra V, Nieh J, Rubenstein D. Vmtorrent: scalable P2P virtual machine streaming. In: Proceedings of ACM Conference on Emerging Network Experiment and Technology. 2012, 289–300Google Scholar
  29. 29.
    Morgan Jr T. Drbl: Diskless remote boot in linux. NETWORK, 2006, 192: 100–0Google Scholar
  30. 30.
    Weil S A, Brandt S A, Miller E L, Long D D, Maltzahn C. Ceph: A scalable, high-performance distributed file system. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation. 2006, 307–320Google Scholar
  31. 31.
    Shamma M, Meyer D T, Wires J, Ivanova M, Hutchinson NC, Warfield A. Capo: recapitulating storage for virtual desktops. In: Proceedings of USENIX Conference on File and Storage Technologies. 2011Google Scholar
  32. 32.
    Liao X, Xiong X, Jin H, Hu L. Lvd: A lightweight virtual desktop management architecture. Systems and Virtualization Management. Standards and New Technologies, 2008, 25–36Google Scholar
  33. 33.
    Wo T, Wang H, Hu C, Cui Y. Dvce: the virtual computing environment supported by distributed VM images. In: Proceedings of ISORC iVCE Workshop. 2012Google Scholar
  34. 34.
    Carns P H, Ligon III W B, Ross R B, Thakur R. PVFS: A parallel file system for linux clusters. In: Proceedings of the 4th Annual Linux Showcase Conference. 2000, 28–28Google Scholar
  35. 35.
    Flouris M D, Lachaize R, Bilas A. Orchestra: Extensible block-level support for resource and data sharing in networked storage systems. In: Proceedings of the 14th IEEE International Conference on Parallel and Distributed Systems. 2008, 237–244Google Scholar
  36. 36.
    Flouris M D, Bilas A. Violin: a framework for extensible block-level storage. In: Proceedings of the 22nd IEEE Goddard Conference on Mass Storage Systems and Technologies. 2005, 128–142Google Scholar
  37. 37.
    Meyer D, Aggarwal G, Cully B, Lefebvre G, Feeley M, Hutchinson N, Warfield A. Parallax: virtual disks for virtual machines. In: Proceedings of EuroSys. 2008Google Scholar
  38. 38.
    Razavi K, Kielmann T. Scalable virtual machine deployment using vm image caches. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. 2013, 65Google Scholar
  39. 39.
    Zhao X, Zhang Y, Wu Y, Chen K, Jiang J, Li K. Liquid: A scalable deduplication file system for virtual machine images. IEEE Transactions on Parallel and Distributed System, 2014, 25(5): 1257–1266CrossRefGoogle Scholar
  40. 40.
    Morrey III C B, Grunwald D. Content-based block caching. In: Proceedings of the 23rd IEEE Conference on Mass Storage Systems and Technologies. 2006Google Scholar
  41. 41.
    Ng C H, Ma M, Wong T Y, Lee P P C, Lui J C S. Live deduplication storage of virtual machine images in an open-source cloud. In: Proceedings of the 12th International Middleware Conference. 2011, 80–99Google Scholar
  42. 42.
    Lagar-Cavilla H A, Whitney J A, Scannell A M, Patchin P, Rumble S M, De Lara E, Brudno M, Satyanarayanan M. Snowflock: rapid virtual machine cloning for cloud computing. In: Proceedings of the 4th ACM European Conference on Computer Systems. 2009, 1–12Google Scholar
  43. 43.
    Zhu J, Jiang Z, Xiao Z. Twinkle a fast resource provisioning mechanism for internet services. In: Proceedings of IEEE Infocom. 2011, 802–810Google Scholar
  44. 44.
    Cui L, Li J, Li B, Huai J, Hu C, Wo T, Al-Aqrabi H, Liu L.VMScatter: Migrate virtual machines to many hosts. In: Proceedings of International Conference on Virtual Execution Environments. 2013, 63–72Google Scholar
  45. 45.
    Merkel D. Docker: Lightweight linux containers for consistent development and deployment. Linux Journal, 2014, 2014(239): 2Google Scholar
  46. 46.
    Zhao Y, Wu J, Liu C. On peer-assisted data dissemination in data center networks: Analysis and implementation. Tsinghua Science and Technology, 2014, 19(1): 51–64CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Wu K, Li H, Feng J, Peng Y, Lu X. Raflow: Read ahead accelerated I/O flow through multiple virtual layers. In: Proceedings of the 9th IEEE International conference on networking, architecture and storage. 2014, 33–42Google Scholar
  48. 48.
    Zhang P, Chu R, Wang H. Swapcached: An effective method to promote guest paging performance on virtualization platform. In: Proceedings of the 7th IEEE International Symposium on Service Oriented System Engineering. 2013, 379–384Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Laboratory for Parallel and Distributed Processing, School of Computer ScienceNational University of Defense TechnologyChangshaChina
  2. 2.Computer Science DepartmentUniversity of VictoriaVictoriaCanada

Personalised recommendations