Frontiers of Computer Science

, Volume 7, Issue 6, pp 838–851

Image categorization using a semantic hierarchy model with sparse set of salient regions

Research Article
  • 116 Downloads

Abstract

Image categorization in massive image database is an important problem. This paper proposes an approach for image categorization, using sparse set of salient semantic information and hierarchy semantic label tree (HSLT) model. First, to provide more critical image semantics, the proposed sparse set of salient regions only at the focuses of visual attention instead of the entire scene was formed by our proposed saliency detection model with incorporating low and high level feature and Shotton’s semantic texton forests (STFs) method. Second, we also propose a new HSLT model in terms of the sparse regional semantic information to automatically build a semantic image hierarchy, which explicitly encodes a general to specific image relationship. And last, we archived image dataset using image hierarchical semantic, which is help to improve the performance of image organizing and browsing. Extension experimental results showed that the use of semantic hierarchies as a hierarchical organizing framework provides a better image annotation and organization, improves the accuracy and reduces human’s effort.

Keywords

salient region sparse set semantic hierarchy image annotation image categorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.The Second Hospital of NanjingNanjingChina

Personalised recommendations