Frontiers of Computer Science

, Volume 7, Issue 5, pp 627–649 | Cite as

Exploring system architectures in AADL via Polychrony and SynDEx

  • Huafeng Yu
  • Yue Ma
  • Thierry Gautier
  • Loïc Besnard
  • Jean-Pierre Talpin
  • Paul Le Guernic
  • Yves Sorel
Research Article


Architecture analysis & design language (AADL) has been increasingly adopted in the design of embedded systems, and corresponding scheduling and formal verification have been well studied. However, little work takes code distribution and architecture exploration into account, particularly considering clock constraints, for distributed multi-processor systems. In this paper, we present an overview of our approach to handle these concerns, together with the associated toolchain, AADL-Polychrony-SynDEx. First, in order to avoid semantic ambiguities of AADL, the polychronous/multiclock semantics of AADL, based on a polychronous model of computation, is considered. Clock synthesis is then carried out in Polychrony, which bridges the gap between the polychronous semantics and the synchronous semantics of SynDEx. The same timing semantics is always preserved in order to ensure the correctness of the transformations between different formalisms. Code distribution and corresponding scheduling is carried out on the obtained SynDEx model in the last step, which enables the exploration of architectures originally specified in AADL. Our contribution provides a fast yet efficient architecture exploration approach for the design of distributed real-time and embedded systems. An avionic case study is used here to illustrate our approach.


Polychrony Signal AADL SynDEx architecture exploration modeling timing analysis scheduling distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SAE (Society of Automotive Engineers) Aerospace. Aerospace Standard AS5506A: architecture analysis and design language (AADL). SAE AS5506A, 2009Google Scholar
  2. 2.
    Feiler P, Gluch D. Model-based engineering with AADL. Addison Wesley Professional, September 2012Google Scholar
  3. 3.
    Singhoff F, Legrand J, Nana L, Marcé L. Scheduling and memory requirements analysis with AADL. Ada Letters. 2005, 1–10Google Scholar
  4. 4.
    Bozzano M, Cimatti A, Katoen J P, Nguyen V, Noll T, Roveri M. Safety, dependability, and performance analysis of extended AADL models. The Computer Journal, 2011, 54(5): 754–775CrossRefGoogle Scholar
  5. 5.
    Feiler P, Hansson J. Flow latency analysis with the architecture analysis and design language (AADL). Technical Report, CMU, 2007Google Scholar
  6. 6.
    Chkouri M, Robert A, Bozga M, Sifakis J. Models in software engineering. Translating AADL into BIP-Application to the Verification of Real-Time Systems. Springer-Verlag, 2009Google Scholar
  7. 7.
    Hugues J, Zalila B, Pautet L, Kordon F. From the Prototype to the final embedded system using the ocarina AADL tool suite. ACM Transactions in Embedded Computing Systems (TECS), 2008, 7(4): 42:1–42:25Google Scholar
  8. 8.
    Yang Z, Hu K, Ma D, Pi L. Towards a formal semantics for AADL behavior annex. In: Proceedings of the 2009. Conference on Design, Automation and Test in Europe. 2009, 1166–1171CrossRefGoogle Scholar
  9. 9.
    Ma Y, Yu H, Gautier T, Le Guernic P, Talpin J P, Besnard L, Heitz M. Toward polychronous analysis and validation for timed software architectures in aadl. In: Proceedings of the 2013 Conference on Design, Automation and Test in Europe. 2013, 1173–1178CrossRefGoogle Scholar
  10. 10.
    Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R. The synchronous languages twelve years later. Proceedings of the IEEE, 2003, 9(1): 64–83CrossRefGoogle Scholar
  11. 11.
    Le Guernic P, Talpin J P, Le Lann J C. Polychrony for system design. Journal for Circuits, Systems and Computers, 2002, 12: 261–304CrossRefGoogle Scholar
  12. 12.
    Talpin J P, Le Guernic P, Shukla S, Doucet F, Gupta R. Formal refinement checking in a system-level design methodology. Fundamenta Informaticae, 2004, 62(2): 243–273MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sorel Y. Massively parallel computing systems with real time constraints: the “algorithm architecture adequation” methodology. In: Proceedings of the 1st International Conference on Massively Parallel Computing Systems. 1994, 44–53Google Scholar
  14. 14.
  15. 15.
    Gamatié A. Designing embedded systems with the SIGNAL programming language. Springer, 2010CrossRefGoogle Scholar
  16. 16.
    Sorel Y. SynDEx: system-level CAD software for optimizing distributed real-time embedded systems. ERCIM News, 2004, 59: 68–69Google Scholar
  17. 17.
    Jahier E, Halbwachs N, Raymond P. Synchronous modeling and validation of priority inheritance schedulers. In: Fundamental Approaches to Software Engineering, Springer, 2009, 140–154CrossRefGoogle Scholar
  18. 18.
    Girault A. A survey of automatic distribution method for synchronous programs. In: Maraninchi F, Pouzet M, Roy V, eds, Proceedings of the 2005 International Workshop on Synchronous Languages, Applications and Programs, ENTCS. April 2005Google Scholar
  19. 19.
    Cost-efficient methods and processes for safety relevant embedded systems (CESAR project).
  20. 20.
    Besnard L, Gautier T, Le Guernic P, Talpin J P. Compilation of polychronous data flow equations. In: Shukla S, Talpin J P, eds, Synthesis of Embedded Software: Frameworks and Methodologies for Correctness by Construction, Springer, 2010, 1–40CrossRefGoogle Scholar
  21. 21.
    An industry working group focusing on open source tools for the development of embedded Systems.
  22. 22.
    Eclipse modeling framework project (EMF).
  23. 23.
  24. 24.
    Abramsky S, Jung A. Domain theory. In: Abramsky S, Gabbay D, Maibaum T, eds, Handbook of Logic in Computer Science, volume 3, 1–168. Oxford University Press, 1994MathSciNetGoogle Scholar
  25. 25.
    Kahn G. The semantics of a simple language for parallel programming. Information Procesing, 1974, 471–475Google Scholar
  26. 26.
    Plotkin G. A powerdomain construction. SIAM Journal on Computing, 1976, 5: 452–487MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sorel Y. Syndex: system-level cad software for optimizing distributed real-time embedded systems. Journal ERCIM News, 2004, 59: 68–69Google Scholar
  28. 28.
    The syndex software.
  29. 29.
    Grandpierre T, Sorel Y. From algorithm and architecture specification to automatic generation of distributed real-time executives: a seamless flow of graphs transformations. In: Proceedings of the 1st ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE’03). 2003, 123–132Google Scholar
  30. 30.
    Dennis J. First version of a dataflow procedure language. In: Lecture notes in computer science, volume 19, 362–376. Springer-Verlag, 1974CrossRefGoogle Scholar
  31. 31.
    Harel D, Pnueli A. On the development of reactive systems. In: Apt K, ed, Logics and Models of Concurrent Systems. Springer Verlag, New York, 1985Google Scholar
  32. 32.
    Grandpierre T. Modèisation d’architectures parallèes hétérogènes pour la génération automatique d’exéutifs distribués temps réel optimisés. PhD thesis, Universitéde Paris Sud, Spéialité éectronique, 2000Google Scholar
  33. 33.
    Liu C, Layland J. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of ACM, 1973, 14(2): 46–61MathSciNetCrossRefGoogle Scholar
  34. 34.
    Grandpierre T, Lavarenne C, Sorel Y. Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors. In: Proceedings of the 7th International Workshop on Hardware/Software Co design, CODES’99. 1999, 74–78CrossRefGoogle Scholar
  35. 35.
    Kermia O, Sorel Y. A rapid heuristic for scheduling non-preemptive dependent periodic tasks onto multiprocessor. In: Proceedings of ISCA 20th International Conference on Parallel and Distributed Computing Systems, PDCS’07. September 2007, 1–6Google Scholar
  36. 36.
    Ndoye F, Sorel Y. Safety critical multiprocessor real-time scheduling with exact preemption cost. In: Proceedings of the 8th International Conference on Systems, ICONS’13. January, 2013, 127–136Google Scholar
  37. 37.
    Ma Y, Yu H, Gautier T, Talpin J P, Besnard L, Le Guernic P. System synthesis from AADL using polychrony. In: Proceedings of the 2011 Electronic System Level Synthesis Conference. 2011, 1–6CrossRefGoogle Scholar
  38. 38.
    Smarandache I, Gautier T, Le Guernic P. Validation of mixed Signal—Alpha real-time systems through affine calculus on clock synchronisation constraints. In: Proceedings of the 1999 World Congress on Formal Methods. 1999, 1364–1383Google Scholar
  39. 39.
    Brandt J, Gemünde M, Schneider K, Shukla S, Talpin J P. Representation of synchronous, asynchronous, and polychronous components by clocked guarded actions. Design Automation for Embedded Systems, 2012, 1–35Google Scholar
  40. 40.
    Yu H, Talpin J P, Besnard L, Gautier T, Marchand H, Le Guernic P. Polychronous controller synthesis from MARTE CCSL timing specifications. In: Proceedings of the 9th IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE’ 11). 2011, 21–30CrossRefGoogle Scholar
  41. 41.
    Pan Q, Gautier T, Besnard L, Sorel Y. Signal to SynDEx: translations between synchronous formalisms. 2003Google Scholar
  42. 42.
    Pimentel A, Erbas C, Polstra S. A systematic approach to exploring embedded system architectures at multiple abstraction levels. IEEE Transactions on Computers, 2006, 55(2): 99–112CrossRefGoogle Scholar
  43. 43.
    Gries M. Methods for evaluating and covering the design space during early design development. Integration, the VLSI Journal, 2004, 38(2): 131–183Google Scholar
  44. 44.
  45. 45.
    Ma Y. Compositional modeling of globally asynchronous locally synchronous (GALS) architectures in a polychronous model of compotation. PhD thesis, University of Rennes 1, 2010Google Scholar
  46. 46.
    Yu H, Ma Y, Glouche Y, Talpin J P, Besnard L, Gautier T, Guernic L P, Toom A, Laurent O. System-level co-simulation of integrated avionics using polychrony. In: Proceedings of the 2011 ACM Symposium on Applied Computing (SAC’11). 2011, 354–359CrossRefGoogle Scholar
  47. 47.
    Sokolsky O, Lee I, Clarke D. Schedulability analysis of AADL models. In: Proceedings of the 20th International Conference on Parallel and Distributed Processing. 2006, 179Google Scholar
  48. 48.
    Gui S, Luo L, Li Y, Wang L. Formal schedulability analysis and simulation for AADL. In: Proceedings of the 2008 International Conference on Embedded Software and Systems (ICESS). 2008, 429–435CrossRefGoogle Scholar
  49. 49.
    Berthomieu B, Bodeveix J P, Farail P, Filali M, Garavel H, Gaufillet P, Lang F, Vernadat F. Fiacre: an intermediate language for model verification in the topcased environment. In: Proceedings of the 2008 International Conference of Embedded Real Time Software. 2008Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Huafeng Yu
    • 1
  • Yue Ma
    • 1
  • Thierry Gautier
    • 1
  • Loïc Besnard
    • 2
  • Jean-Pierre Talpin
    • 1
  • Paul Le Guernic
    • 1
  • Yves Sorel
    • 3
  1. 1.INRIA Rennes — Bretagne AtlantiqueRennesFrance
  2. 2.IRISA/CNRSRennesFrance
  3. 3.INRIA Paris — RocquencourtDomaine de VoluceauLe Chesnay CedexFrance

Personalised recommendations