Advertisement

Frontiers of Computer Science in China

, Volume 2, Issue 2, pp 193–207 | Cite as

An overview of quantum computation models: quantum automata

  • Daowen Qiu
  • Lvzhou Li
Review Article

Abstract

Quantum automata, as theoretical models of quantum computers, include quantum finite automata (QFA), quantum sequential machines (QSM), quantum pushdown automata (QPDA), quantum Turing machines (QTM), quantum cellular automata (QCA), and the others, for example, automata theory based on quantum logic (orthomodular lattice-valued automata). In this paper, we try to outline a basic progress in the research on these models, focusing on QFA, QSM, QPDA, QTM, and orthomodular lattice-valued automata. Also, other models closely relative to them are mentioned. In particular, based on the existing results in the literature, we finally address a number of problems to be studied in future.

Keywords

quantum computation quantum automata automata theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gruska J. Quantum Computing. London: McGraw-Hill, 1999Google Scholar
  2. 2.
    Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000zbMATHGoogle Scholar
  3. 3.
    Bennett C. Logical reversibility of computation. IBM Journal of Research and Development, 1973, 17: 525–532zbMATHCrossRefGoogle Scholar
  4. 4.
    Benioff P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 1980, 22: 563–591CrossRefMathSciNetGoogle Scholar
  5. 5.
    Feynman R P. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21: 467–488CrossRefMathSciNetGoogle Scholar
  6. 6.
    Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A, 1985, 400: 97–117MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Yao A C. Quantum circuit complexity. In: Proceedings of the 34th IEEE Symposium on Foundations of Computer science. IEEE Computer Society Press, 1993, 352–361Google Scholar
  8. 8.
    Shor P W. Algorithm for quantum computation: Discrete logarithms and factoring. In: Proceedings of the37th IEEE Annuual Symposium on Foundations of Computer science. IEEE Computer Society Press, 1994, 124–134Google Scholar
  9. 9.
    Grover L. A fast quantum mechanical algorithms for datdbase search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. New York: ACM, 1996, 212–219Google Scholar
  10. 10.
    Hopcroft J E, Ullman J D. Introduction to Automata Theory, Languages, and Computation. New York: Addision-Wesley, 1979zbMATHGoogle Scholar
  11. 11.
    Moore C, Crutchfield J P. Quantum automata and quantum grammars. Theoretical Computer Science, 2000, 237: 275–306. Also see arXiv: quant-ph/9707031, 1997CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Kondacs A, Watrous J. On the power of finite state automata. In: Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, 1997, 66–75Google Scholar
  13. 13.
    Ambainis A, Freivalds R. One-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science. Palo Alfo, California: IEEE Computer Society Press, 1998, 332–341, also see arXiv: quant-ph/9802062, 1998Google Scholar
  14. 14.
    Nayak A. Optimal lower bounds for quantum automata and random access codes. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 1999, 124–133Google Scholar
  15. 15.
    Ambainis A, Nayak A, Ta-Shma A, et al. Dense quantum coding and quantum automata. Journal of the ACM 2002, 49(4): 496–511CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ambainis A, Beaudry M, Golovkins M, et al. Algebraic results on quantum automata. Theory of Computing Systems, 2006, 39: 1654–1188CrossRefMathSciNetGoogle Scholar
  17. 17.
    Amano M, Iwama K. Undecidability on quantum finite automata. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing. Atlanta, Georgia: ACM Computer Society Press, 1999, 368–375Google Scholar
  18. 18.
    Ambainis A, Watrous J. Two-way finite automata with quantum and classical states. Theoretical Computer Science, 2002, 287: 299–311CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Bertoni A, Carpentieri M. Analogies and differences between quantum and stochastic automata. Theoretical Computer Science, 2001, 262: 69–81CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Bertoni A, Carpentieri M. Regular Languages accepted by quantum automata. Information and Computation, 2001, 165: 174–182CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Blondel V D, Jeandel E, Koiran P, et al. Decidable and undecidable problems about quantum automata. SIAM Journal on Computing, 2005, 34(6): 1464–1473CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Bertoni A, Mereghetti C, Palano B. Quantum computing: 1-way quantum automata. In: Proceedings of the 9th International Conference on Developments in Language Theory (DLT’2003), Lecture Notes in Computer Science, 2003, 2710: 1–20Google Scholar
  23. 23.
    Brodsky A, Pippenger N. Characterizations of 1-way quantum finite automata. SIAM Journal on Computing, 2002, 31: 1456–1478, also seequant-ph/9903014, 1999CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Ambainis A, Kikusts A, Valdats M. On the class of languages recognizable by 1-way quantum finite automata. In: Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, 2001, 2010: 305–316Google Scholar
  25. 25.
    Qiu D W. Characterizations of quantum automata. Journal of Software, 2003, 14(1): 9–15, (in Chinese)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Qiu D W, Ying M S. Characterizations of quantum automata. Theoretical Computer Science, 2004, 312: 479–489CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Qiu D W. Some observations on two-way finite automata with quantum and classical states. see quant-ph/0701187, 2007Google Scholar
  28. 28.
    Li L Z, Qiu D W. Determining the equivalence for one-way quantum finite automata. See quant-ph/0703087v2, 2007. Theoretical Computer Science (in press)Google Scholar
  29. 29.
    Gudder S. Quantum computers. International Journal of Theoretical Physics, 2000, 39: 2151–2177CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Qiu D W. Characterization of sequential quantum machines. International Journal of Theoretical Physics, 2002, 41: 811–822CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Li L Z, Qiu D W. Determination of equivalence between quantum sequential machines. Theoretical Computer Science, 2006, 358: 65–74CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Golovkins M. Quantum pushdown automata. In: Proceedings of the 27th Conference on Current Trends in Theory and Practice of Informatics. Lecture Notes in Computer Science, 2000, 1963: 336–346Google Scholar
  33. 33.
    Nakanishi M. On the power of one-sided error quantum pushdown automata with classical stack operations. In: Proceedings of the 10th Annual International Computing and Combinatorics Conference (COCOON 2004). Lecture Notes in Computer Science, 2004, 3106: 179–187Google Scholar
  34. 34.
    Bernstein E, Vazirani U. Quantum complexity theory. SIAM Journal on Computing, 1997, 26(5): 1411–1473CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Nishimura H, Ozawa M. Computational complexity of uniform quantum circuit families and quantum Turing machines. Theoretical Computer Science, 2002, 276: 147–181CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Watrous J. Space-bounded quantum complexity. Journal of Computer and System Sciences, 1999, 59(2): 281–326CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Hirvensalo M. On quantum computation. PhD thesis, Turku Center for Computer Science, 1997Google Scholar
  38. 38.
    Qiu D W. Simulations of quantum Turing machines by quantum multi-stack machines. In: Computability in Europe (CIE2008), Athens, Greece, June 15–20, 2008, also see arXiv: quant-ph/0501176, 2005Google Scholar
  39. 39.
    Müller M. Strongly universal quantum Turing machines and invariance of Kolmogorov complexity. IEEE Transactions on Information Theory, 2008, 54(2): 763–780CrossRefGoogle Scholar
  40. 40.
    Watrous J. On one-dimensional cellular automata. In: Proceedings of the 36th IEEE Annual Symposium on Foundations of Computer Science. 1995, 528–537Google Scholar
  41. 41.
    Dürr C, Santha M. A decision procedure for unitary linear quantum cellular automata. SIAM Journal on Computing, 2002, 31(4): 1076–1089CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Ying M S. Automata theory based on quantum logic I. International Journal of Theoretical Physics, 2000, 39: 981–991Google Scholar
  43. 43.
    Ying M S. Automata theory based on quantum logic II. International Journal of Theoretical Physics, 2000, 39: 2545–2557CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Qiu D W. Automata and grammar theory based on quantum logic. Journal of Software, 2003, 14(1): 23–27, (in Chinese)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Qiu D W. Automata theory based on quantum logic: Some characterizations. Information and Compututation, 2004, 190: 179–195CrossRefzbMATHGoogle Scholar
  46. 46.
    Lu R Q, Zheng H. Lattices of quantum automata. International Journal of Theoretical Physics, 2003, 42: 1425–1449CrossRefMathSciNetGoogle Scholar
  47. 47.
    Cheng W, Wang J. Grammar theory based on quantum logic. International Journal of Theoretical Physics, 2003, 42: 1677–1691CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Ying M S. A theory of computation based on quantum logic (I). Theoretical Computer Science, 2005, 344: 134–207CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Qiu D W. Automata theory based on quantum logic: reversibilities and pushdown automata. Theoretical Computer Science, 2007, 386: 38–56CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Qiu D W. Notes on automata theory based on quantum logic. Science in China (Series F: Information Sciences), 2007, 50(2): 154–169CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    Rabin M O. Probabilistic automata. Information and Control, 1963, 6: 230–244CrossRefGoogle Scholar
  52. 52.
    Paz A. Introduction to Probabilistic Automata. New York: Academic Press, 1971zbMATHGoogle Scholar
  53. 53.
    Li L Z, Qiu D W. A polynomial-time algorithm for the equivalence between quantum sequential machines. see arXiv: quant-ph/0604085, 2006Google Scholar
  54. 54.
    Tonder A V. A lambda calculus for quantum computation. SIAM Journal on Computing, 2004, 33(5): 1109–1135CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Gudder S. Quantum automata: An overview. International Journal of Theoretical Physics, 1999, 38: 2261–2282CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Koshiba T. Polynomial-time algorithms for the equivalence for one-way quantum finite automata. In: Proceedings of the 12th International Symposium on Algorithms and Computation (ISAAC’2001), Christchurch, New Zealand, Lecture Notes in Computer Science, 2001, 2223: 268–278Google Scholar
  57. 57.
    Ambainis A, Bonner R, Freivalds R, et al. Probabilities to accept languages by quantum finite automata. In: Proceedings of COCOON’99, Lecture Notes in Computer Science, 1999, 1627: 174–183Google Scholar
  58. 58.
    Ambainisa A, Kikusts A. Exact results for accepting probabilities of quantum automata. Theoretical Computer Science, 2003, 295: 3–25CrossRefMathSciNetGoogle Scholar
  59. 59.
    Kikusts A. A small 1-way quantum finite automaton. see arXiv: quant-ph/9810065, 1998Google Scholar
  60. 60.
    Ablayev F, Gainutdinova A. On the Lower Bounds for One-Way Quantum Automata. In: Proceedings of 25th International Symposium on Mathematical Foundations of Computer Science (MFCS’2000), Lecture Notes in Computer Science, 2000, 1893: 132–140Google Scholar
  61. 61.
    Bertoni A, Mereghetti C, Palano B. Lower Bounds on the Size of Quantum Automata Accepting Unary Languages. In: Proceedings of 8th Italian Conference on Theoretical Computer Science (ICTCS’2003), Lecture Notes in Computer Science, 2003, 2841: 86–96Google Scholar
  62. 62.
    Bertoni A, Mereghetti C, Palano B. Small size quantum automata recognizing some regular languages. Theoretical Computer Science, 2005, 340: 394–407CrossRefMathSciNetzbMATHGoogle Scholar
  63. 63.
    Mereghetti C, Palano B. Upper Bounds on the Size of One-Way Quantum Finite Automata, In: Proceedings of the 7th Italian Conference on Theoretical Computer Science (ICTCS’2001), Lecture Notes in Computer Science, 2001, 2202: 123–135Google Scholar
  64. 64.
    Mereghetti C, Palano B. On the size of one-way quantum finite automata with periodic behaviors. Theoretical Informatics and Applications, 2002, 36: 277–291CrossRefMathSciNetzbMATHGoogle Scholar
  65. 65.
    Mereghetti C, Palano B. Quantum automata for some multiperiodic languages. Theoretical Computer Science, 2007, 387: 177–186MathSciNetzbMATHGoogle Scholar
  66. 66.
    Paschen K. Quantum finite automata using ancilla qubits. University of Karlsruhe, Technical Report, May 2000Google Scholar
  67. 67.
    Freivalds R. Probabilistic two-way machines. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, 1981, 188: 33–45Google Scholar
  68. 68.
    Greenberg A, Weiss A. A lower bound for probabilistic algorithms for finite state machines. Journal of Computer and System Sciences, 1986, 33(1): 88–105CrossRefMathSciNetzbMATHGoogle Scholar
  69. 69.
    Dwork C, Stockmeyer L. A time-complexity gap for two-way probabilistic finite state automata. SIAM Journal on Computing, 1990, 19: 1011–1023CrossRefMathSciNetzbMATHGoogle Scholar
  70. 70.
    Kaneps J, Freivalds R. Running time to recognize nonregular languages by 2-way probabilistic automata. In: Proceedings of the 18th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science 1991, 510: 174–185Google Scholar
  71. 71.
    Dwork C, Stockmeyer L. Finite state verifier I: the power of interaction. Journal of the ACM, 1992, 39(4): 800–828CrossRefMathSciNetzbMATHGoogle Scholar
  72. 72.
    Birkhoff G, von Neumann J. The logic of quantum mechanics. Annals of Mathematics, 1936, 37: 823–843CrossRefMathSciNetGoogle Scholar
  73. 73.
    Pták P, Pulmannová S. Orthomodular Structures as Quantum Logics. Dordrecht: Kluwer, 1991zbMATHGoogle Scholar
  74. 74.
    Qiu D W. Automata theory based on complete residuated lattice-valued logic. Science in China (Series F: Information Sciences), 2001, 44(6): 419–429MathSciNetGoogle Scholar
  75. 75.
    Qiu D W. Automata theory based on complete residuated lattice-valued logic (II). Science in China (Series F: Information Sciences), 2002, 45(6): 442–452MathSciNetzbMATHGoogle Scholar
  76. 76.
    Ledda A, Konig M, Paoli F, et al. MV-algebras and quantum computation. Studia Logica, 2006, 82: 245–270CrossRefMathSciNetzbMATHGoogle Scholar
  77. 77.
    Deutsch D. Quantum computational networks. Proceedings of the Royal Society of London Series A, 1989, 400: 73–90MathSciNetGoogle Scholar
  78. 78.
    Adleman L, DeMarrais J, Huang H. Quantum computability. SIAM Journal on Computing, 1997, 26(5): 1524–1540CrossRefMathSciNetzbMATHGoogle Scholar
  79. 79.
    Bennett C, Bernstein E, Brassard G, et al. Strengths and weaknesses of quantum computation. SIAM Journal on Computing, 1997, 26(5): 1510–1523CrossRefMathSciNetzbMATHGoogle Scholar
  80. 80.
    Cleve R. An Introduction to Quantum Complexity Theory. arXiv: quantph/9906111v1, 1999Google Scholar
  81. 81.
    Fortnow L, Rogers J. Complexity limitations on quantum computation. Journal of Computer and System Sciences, 1999, 59(2): 240–252CrossRefMathSciNetzbMATHGoogle Scholar
  82. 82.
    Fortnow L. One complexity theorists view of quantum computing. Theoretical Computer Science, 2003, 292: 597–610CrossRefMathSciNetzbMATHGoogle Scholar
  83. 83.
    Simon D. On the power of quantum computation. SIAM Journal on Computing, 1997, 26(5): 1474–1483CrossRefMathSciNetzbMATHGoogle Scholar
  84. 84.
    Spakowski H, Thakur M, Tripathi R. Quantum and classical complexity classes: Separations, collapses, and closure properties. Information and Computation, 2005, 200(1): 1–34CrossRefMathSciNetzbMATHGoogle Scholar
  85. 85.
    Yu S. Regular Languages. In: Rozenberg G, Salomaa A, eds. Handbook of Formal Languages. Berlin: Spring-Verlag, 1998, 41–110Google Scholar
  86. 86.
    Nishimura H, Yamakami T. An application of quantum finite automata to interactive proof systems. In: Proceedings of the 9th International Conference on Implementation and Application of Automata. Lecture Notes in Computer Science. Berlin: Springer, 2004, 3317: 225–236Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations