Frontiers of Computer Science in China

, Volume 2, Issue 1, pp 55–66 | Cite as

On the verification of polynomial system solvers

  • Changbo Chen
  • Marc Moreno Maza
  • Wei Pan
  • Yuzhen Xie
Research Article


We discuss the verification of mathematical software solving polynomial systems symbolically by way of triangular decomposition. Standard verification techniques are highly resource consuming and apply only to polynomial systems which are easy to solve. We exhibit a new approach which manipulates constructible sets represented by regular systems. We provide comparative benchmarks of different verification procedures applied to four solvers on a large set of well-known polynomial systems. Our experimental results illustrate the high efficiency of our new approach. In particular, we are able to verify triangular decompositions of polynomial systems which are not easy to solve.


software verification polynomial system solver triangular decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grabmeier J, Kaltofen E, Weispfenning V. Computer Algebra Handbook. Berlin: Springer, 2003MATHGoogle Scholar
  2. 2.
    Aubry P, Lazard D, Moreno Maza M. On the theories of triangular sets. Journal of Symbolic Computation, 1999, 28(1–2): 105–124MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Wang D. Computing triangular systems and regular systems. Journal of Symbolic Computation, 2000, 30(2): 221–236MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Donati L, Traverso C. Experimenting the Gröbner basis algorithm with the ALPI system. In: Proceedings of ISSAC. New York: ACM Press, 1989, 192–198Google Scholar
  5. 5.
    Aubry P, Moreno Maza M. Triangular sets for solving polynomial systems: a comparative implementation of four methods. Journal of Symbolic Computation, 1999, 28(1–2): 125–154MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Backelin J, Fröberg R. How we proved that there are exactly 924 cyclic 7-roots. In: Watt S M, Proceedings of ISSAC. New York: ACM Press, 1991, 103–111Google Scholar
  7. 7.
    Sit W. Computations on quasi-algebraic sets. In: Proceedings of IMACS ACA, 1998Google Scholar
  8. 8.
    Lemaire F, Moreno Maza M, Xie Y. The regularChains library. In: Kotsireas I S, ed. Proceedings of Maple Conference 2005. 2005, 355–368Google Scholar
  9. 9.
    The Computational Mathematics Group. The BasicMath library NAG Ltd, Oxford, UK, 1998.
  10. 10.
  11. 11.
    Manubens M, Montes A. Improving DISPGB Algorithm Using the Discriminant Ideal, 2006.
  12. 12.
    The SymbolicData Project, 2000–2006.
  13. 13.
    Wang D. Elimination Methods. Berlin: Springer, 2001MATHGoogle Scholar
  14. 14.
    Boulier F, Lemaire F, Moreno Maza M. Well known theorems on triangular systems. In: Proceedings of Transgressive Computing 2006. Spain: University of Granada, 2006Google Scholar
  15. 15.
    Moreno Maza M. On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Google Scholar
  16. 16.
    Eisenbud D. Commutative Algebra. GTM 150. Berlin: Springer, 1994Google Scholar
  17. 17.
    Hartshorne R. Algebraic Geometry. Berlin: Springer-Verlag, 1997Google Scholar
  18. 18.
    O’Halloran J, Schilmoeller M. Gröbner bases for constructible sets. Journal of Communications in Algebra, 2002, 30(11):5479–5483MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chen C, Golubitsky O, Lemaire F, et al. Comprehensive triangular decomposition. In: Proceedings of Computer Algebra in Scientific Computing. Berlin: Springer, LNCS, 2007, 4770:73–101CrossRefGoogle Scholar

Copyright information

© Higher Education Press 2008

Authors and Affiliations

  • Changbo Chen
    • 1
  • Marc Moreno Maza
    • 1
  • Wei Pan
    • 1
  • Yuzhen Xie
    • 1
  1. 1.The University of Western OntarioLondonCanada

Personalised recommendations