Advertisement

Frontiers of Computer Science in China

, Volume 2, Issue 1, pp 106–112 | Cite as

ID-based deniable ring authentication with constant-size signature

  • Lingling WangEmail author
  • Guoyin Zhang
  • Chunguang Ma
Research Article

Abstract

Deniable ring authentication allows a member of an ad-hoc sunset of participants to authenticate a message without revealing which member has issued the signature, and the verifier cannot transfer the signature to any third party. It is an important cryptographic primitive for privacy and anonymous communication. Unfortunately, the size of the signature of the proposed deniable ring authentication is dependent on the size of the ring. It is inefficient especially when the size of the ring is large. In this paper, we propose an ID-based version of deniable ring authentication. We present a generic construction which uses dynamic accumulators to construct ID-based deniable ring authentication with constant-size signature. We also give an ID-based deniable ring authentication based on bilinear pairings, which is proved to be secure in the random oracle model.

Keywords

deniable ring authentication privacy ID-based constant-size signature bilinear pairings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naor M. Deniable ring authentication. In: Proceedings of Crypto 2002. Berlin: Springer-Verlag, LNCS 2442, 2002, 481–498Google Scholar
  2. 2.
    Susilo W, Mu Y. Non-interactive deniable ring authentication. In: Proceedings of ICISC 2003. Berlin: Springer-Verlag, LNCS 2971, 2004, 386–401Google Scholar
  3. 3.
    Susilo W, Mu Y. Deniable ring authentication revisited. In: Proceedings of ACNS 2004. Berlin: Springer-Verlag, LNCS 3089, 2004, 149–163Google Scholar
  4. 4.
    Rivest R, Shamir A, Tauman Y. How to leak a secret. In: Proceedings of Asiacrypt 2001. Berlin: Springer-Verlag, LNCS 2248, 2001, 552–565CrossRefGoogle Scholar
  5. 5.
    Zhang F G, Kim K. ID-based blind signature and ring signature from pairings. In: Proceedings of Asiacrypt 2002. Berlin: Springer-Verlag, LNCS 2501, 2002, 533–547CrossRefGoogle Scholar
  6. 6.
    Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of Crypto 1984. Berlin: Springer-Verlag, LNCS 196, 1984, 47–53Google Scholar
  7. 7.
    Benaloh J, Mare M D. One-way accumulators: a decentralized alternative to digital signatures. In: Proceedings of EUROCRYPT 1993. Berlin: Springer-Verlag, LNCS 765, 1993, 274–285Google Scholar
  8. 8.
    Baric N, Pfitzmann B. Collision-free accumulators and failstop signature schemes without trees. In: Proceedings of EUROCRYPT 1997. Berlin: Springer-Verlag, LNCS 1233, 1997, 480–494Google Scholar
  9. 9.
    Goodrich MT, Tamassia R. An efficient dynamic and distributed cryptographic accumulator. In: Proceedings of ISC 2002. Berlin: Springer-Verlag, LNCS 2433, 2002, 372–388Google Scholar
  10. 10.
    Camenisch J, Lysyanskaya A. Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Proceedings of CRYPTO 2002. Berlin: Springer-Verlag, LNCS 2442, 2002, 61–76Google Scholar
  11. 11.
    Nguyen L. Accumulator from bilinear pairings and application to ID-based ring signatures and group membership revocation. In: Proceedings of CT-RSA 2005. Berlin: Springer-Verlag, LNCS 3376, 2005, 275–292Google Scholar
  12. 12.
    Dodis Y, Kiayias A, Nicolosi A, et al. Anonymous identification in Ad Hoc Groups. In: Proceedings of EUROCRYPT 2004. Berlin: Springer-Verlag, LNCS 3027, 2004, 609–626Google Scholar
  13. 13.
    Zhang F G, Safavi-Naini R, Susilo W. ID-based chameleon hashes from bilinear pairings. http://eprint.iacr.org/2003/208
  14. 14.
    Dutta R, Barua R, Sarkar P. Pairing-based cryptographic protocols: a survey. http://eprint.iacr.org/2004/064.pdf
  15. 15.
    Maas M. Pairing-based cryptography. Master thesis by Department of Mathematics and Computing Science, Technische University Eindhoven, 2004Google Scholar
  16. 16.
    Pointcheval D, Stern J. Security proofs for signature schemes. In: Proceedings of Eurocrypt 2006. Berlin: Springer-Verlag, LNCS 1070, 1996, 387–398Google Scholar
  17. 17.
    Ma C G, Yang Y X. Transferable off-line electronic cash. Chinese Journal of Computers, 2005, 28(3): 301–308Google Scholar
  18. 18.
    Ma C G, Yang Y X, Hu Z M. A fair electronic check systems with reusable refund. ACTA Electronic Sinica, 2005, 33(9): 1562–1566Google Scholar
  19. 19.
    Zhang G Y, Wang L L, Ma C G. Survey on transitive signature schemes. Chinese Journal of Computer Science, 2007, 34(1): 6–11Google Scholar

Copyright information

© Higher Education Press 2008

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina

Personalised recommendations