Advertisement

Frontiers of Computer Science in China

, Volume 1, Issue 1, pp 37–49 | Cite as

A quick overview of membrane computing with some details about spiking neural P systems

  • Gheorghe PăunEmail author
Review Article

Abstract

We briefly present the basic elements of membrane computing, a branch of natural computing inspired by the structure and functioning of living cells, then we give some details about spiking neural P systems, a class of membrane systems recently introduced, with motivations related to the way neurons communicate by means of spikes. In both cases, of general P systems and of spiking neural P systems, we introduce the fundamental concepts, give a few examples, then recall the types of results and of applications. A series of bibliographical references are provided.

Keywords

natural computing membrane computing P system spiking neural P system Turing computability chomsky hierarchy computational biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Păun Gh. Computing with membranes. Journal of Computer and System Sciences, 2000, 61(1): 108–143 (and Turku Center for Computer Science-TUCS Report 208, 1998 www.tucs.fi)CrossRefMathSciNetGoogle Scholar
  2. 2.
  3. 3.
    Păun Gh. Membrane Computing. An Introduction. Berlin: Springer, 2002Google Scholar
  4. 4.
    Ciobanu G, Păun Gh. Pérez-Jiménez M J, eds. Applications of Membrane Computing. Berlin: Springer, 2006Google Scholar
  5. 5.
    Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002Google Scholar
  6. 6.
    Freund R., Kari L., Oswald M., et al. Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Sci, 2005, 330(2): 251–266zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Alhazov A, Freund R, Rogozhin Y. Computational power of symport/antiport: history, advances, and open problems. In: Freund R, Păun Gh, Rozenberg G, et al., eds. Membrane Computing. 6th International Workshop, Austria, 2005, Revised Selected and Invited Papers. LNCS 3859, Berlin: Springer, 2006, 44–78Google Scholar
  8. 8.
    Păun Gh, Pazos J, Pérez-Jiménez M J, et al. Symport/antiport P systems with three objects are universal. Fundamenta Informaticae. 2005, 64(1–4): 353–367Google Scholar
  9. 9.
    Freund R, Păun Gh, Rozenberg G, et al, eds. Membrane Computing. 6th International Workshop, WMC6, Vienna, Austria, July 2005, Revised Selected and Invited Papers. LNCS 3859, Berlin: Springer, 2006Google Scholar
  10. 10.
    Hoogeboom H J, Păun Gh, Rozenberg G, et al, eds. Membrane Computing, International Workshop, Leiden, The Netherlands, 2006, Selected and Invited Papers. LNCS 4361, Berlin: Springer, 2007Google Scholar
  11. 11.
    Ibarra O H, Yen H C. Deterministic catalytic systems are not universal. Theoretical Computer Sci. 2006, 363: 149–161zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ibarra O H. The number of membranes matters. In: Martín-Vide C, Mauri G, Păun Gh, et al, eds. Membrane Computing. International Workshop, Spain, Revised Papers. LNCS 2933. Berlin: Springer, 2004, 218–231Google Scholar
  13. 13.
    Pérez-Jiménez M J, Romero-Jiménez A, Sancho-Caparrini F. Teoria de la complejidad en modelos de computacion celular con membranas. Sevilla: Kronos Editorial, 2002Google Scholar
  14. 14.
    Gutiérrez-Naranjo M A, P/bu aun Gh, Pérez-Jiménez M J, eds. Cellular Computing. Complexity Aspects. Sevilla: Fenix Editora, 2005Google Scholar
  15. 15.
  16. 16.
    Nishida T Y. An application of P systems: A new algorithm for NP-complete optimization problems. In: Callaos N, et al, eds. Proceedings of the 8th World Multi-Conference on Systems, Cybernetics and Informatics, 2004, 5: 109–112Google Scholar
  17. 17.
    Nishida T Y. Membrane algorithms: Approximate algorithms for NP-complete optimization problems. In: Ciobanu G, Păun Gh, Pérez-Jiménez M J, eds. Applications of Membrane Computing. Berlin: Springer, 2006, 301–312Google Scholar
  18. 18.
    Huang L, He X X, Wang N, et al. P systems based multi-objective optimization algorithm. In: Pre-proceedings of BIC-TA 2006. Volume of Membrane Computing Section, 113–123Google Scholar
  19. 19.
    Huang L, Wang N. An optimization algorithms inspired by membrane computing. In: Jiao L, et al, eds. Proceeding of ICNC 2006. LNCS 4222. Springer, 2006, 49–55Google Scholar
  20. 20.
    Leporati A, Pagani D. A membrane algorithm for the min storage problem. In: Hoogeboom H J, Păun Gh, Rozenberg G, et al, eds. Membrane Computing, International Workshop, Netherlands, 2006, Selected and Invited Papers. LNCS 4361, Berlin: Springer, 2007, 443–462Google Scholar
  21. 21.
    Zaharie D, Ciobanu G. Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In: Hoogeboom H J, Păun Gh, Rozenberg G, et al, eds. Membrane Computing, International Workshop, Netherlands, 2006, Selected and Invited Papers, LNCS 4361, Berlin: Springer, 2007, 536–554Google Scholar
  22. 22.
    Ionescu M, Păun Gh, Yokomori T. Spiking neural P systems. Fundamenta Informaticae, 2006, 71(2–3): 279–308zbMATHMathSciNetGoogle Scholar
  23. 23.
    Gerstner W, Kistler W. Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge Univ. Press, 2002Google Scholar
  24. 24.
    Maass W. Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK, 2002; 8(1): 32–36Google Scholar
  25. 25.
    Cavaliere M, Freund R, Leitsch A, et al. Event-related outputs of computations in P systems. In: Proceeding of Third Brainstorming Week on Membrane Computing. RGNC Report. 2005, 107–122Google Scholar
  26. 26.
    Păun Gh, Pérez-Jiménez M J, Rozenberg G. Spike trains in spiking neural P systems. Intern. J. Found. Computer Sci. 2006, 17(4): 975–1002CrossRefGoogle Scholar
  27. 27.
    Păun Gh, Pérez-Jiménez M J, Rozenberg G. Infinite spike trains in spiking neural P systems. 2006 (Submitted)Google Scholar
  28. 28.
    Chen H, Ishdorj T O, Păun Gh, et al. Spiking neural P systems with extended rules. In: Gutiérrez-Naranjo M A, et al, eds. Proceedings of Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006, Vol I, 241–265Google Scholar
  29. 29.
    Ibarra O H, Woodworth S, Yu F, et al. On spiking neural P systems and partially blind counter machines. In: Proceedings of Fifth Unconventional Computation Conference, UK, 2006Google Scholar
  30. 30.
    Ibarra O H, Woodworth S. Characterizations of some restricted spiking neural P systems. In: Hoogeboom H J, Păun Gh, Rozenberg G, et al, eds. Membrane Computing, International Workshop, Netherlands, 2006, Selected and Invited Papers. LNCS 4361, Berlin: Springer, 2007, 424–442Google Scholar
  31. 31.
    Korec I. Small universal register machines. Theoretical Computer Science. 1996, 168: 267–301zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Păun A, Păun Gh. Small universal spiking neural P systems. In: Gutiérrez-Naranjo M A, et al, eds. Proceedings of Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006, Vol II, 213–234; and BioSystems (In press)Google Scholar
  33. 33.
    Ibarra O H, Păun A, Păun Gh, et al. Normal forms for spiking neural P systems. In: Gutiérrez-Naranjo M A, et al, eds. Proceedings of Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006, Vol II, 105–136; and Theoretical Computer Sci.(In press)Google Scholar
  34. 34.
    Chen H, Freund R, Ionescu M, et al. On string languages generated by spiking neural P systems. In: Gutiérrez-Naranjo M A, et al, eds. Proceedings of Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006, Vol I, 169–194Google Scholar
  35. 35.
    Chen H, Ionescu M, Ishdorj T O. On the efficiency of spiking neural P systems. In: Gutiérrez-Naranjo M A, et al, eds. Proceedings of Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006, Vol I, 195–206; and In: Proceedings of 8th Intern. Conf. on Electronics, Information, and Communication, Mongolia, 2006, 49–52Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Mathematics of the Romanian AcademyBucureştiRomania
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain

Personalised recommendations