Advertisement

Robotic-assisted versus open pancreaticoduodenectomy: the results of a case-matched comparison

  • Marco Vito MarinoEmail author
  • Mauro Podda
  • Marcos Gomez Ruiz
  • Carmen Cagigas Fernandez
  • Domenico Guarrasi
  • Manuel Gomez Fleitas
Original Article
  • 75 Downloads

Abstract

Robotic-assisted pancreaticoduodenectomy (RPD) is progressively gaining momentum. It seems to provide some potential advantages over open approach. Unfortunately, only few studies investigated the impact of RPD on the oncologic outcomes. We performed a 1:1 case-matched comparison between two groups of 35 patients affected by a malignant tumor who underwent RPD and open (OPD) pancreaticoduodenectomy from August 2014 to April 2016. Operative time was longer in the RPD group compared to OPD (355 vs 262 min, p = 0.023), whereas median blood loss (235 vs 575 ml, p = 0.016) and length of hospitalization (6.5 vs 8.9 days, p = 0.041) were lower for RPD. A significant reduction of overall postoperative morbidity rate was found in the RPD group compared to the OPD group (31.4% vs 48.6% p = 0.034). No statistically significant difference was found between the two groups in terms of overall pancreatic fistula rate, R0 resection rate, and number of harvested lymph nodes. The overall and disease-free survival at 1 and 3 years were similar. RPD is a safe and effective technique. It reduces the estimated blood loss, the length hospital of stay and the rate of complications after pancreaticoduodenectomy, while preserving a good oncologic adequacy.

Keywords

Robotic-assisted pancreaticoduodenectomy Open pancreaticoduodenectomy Postoperative Complications Pancreatic Fistula Oncologic adequacy 

Notes

Author’s contributions

MVM: Study conception and design, acquisition, interpretation and analysis of data; drafting and critically revising the article for important intellectual content; and final approval of the version to be published. MP: Study conception and design, interpretation and analysis of data; drafting and critically revising the article for important intellectual content; editing and revising the English for the final version to be published; and final approval of the version to be published. MGR: Interpretation and analysis of data; drafting and critically revising the article for important intellectual content; editing and revising the English for the final version to be published; and final approval of the version to be published. CGF: Study conception and design, acquisition, interpretation and analysis of data; drafting and critically revising the article for important intellectual content; and final approval of the version to be published. DG: Study conception and design, interpretation and analysis of data; critically revising the article for important intellectual content; and final approval of the version to be published. MGF: Interpretation and analysis of data; drafting and critically revising the article for important intellectual content; editing and revising the English for the final version to be published; and final approval of the version to be published. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

Authors Marco Vito Marino, Manuel Gomez Fleitas, Mauro Podda, Domenico Guarrasi and Carmen Cagigas Fernandez declare that they have no conflict of interest; Author Marcos Gomez Ruiz is Proctor and Advisor of Intuitive Surgical Inc., Medtronic and Johnson & Johnson.

Ethical approval and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Supplementary material

Supplementary material 1 (MP4 179386 kb)

References

  1. 1.
    Gagner M, Pomp A (1994) Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc 8:408–410CrossRefPubMedGoogle Scholar
  2. 2.
    Wang M, Cai H, Meng L et al (2016) Minimally invasive pancreaticoduodenectomy: a comprehensive review. Int J Surg. 35:139–146CrossRefPubMedGoogle Scholar
  3. 3.
    Asbun HJ, Stauffer JA (2012) Laparoscopic vs open pancreaticioduodenectomy: overall outcomes and severity of complications using the Accordion Severity Grading System. J Am Coll Surg 215:810–819CrossRefPubMedGoogle Scholar
  4. 4.
    Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery; Personal experience in a large community hospital. Arch Surg 138:777–784CrossRefPubMedGoogle Scholar
  5. 5.
    Kang CM, Kim DH, Lee WJ et al (2011) Conventional laparoscopic and robot-assisted spleen preserving pancreatectomy: does da Vinci have clinical advantages? Surg Endosc 25:2004–2009CrossRefGoogle Scholar
  6. 6.
    Lei P, Wei B, Guo W et al (2014) Minimally invasive surgical approach compared with open pancreaticoduodenectomy a systematic review and meta-analysis on the feasibility and safety. Surg Laparosc Endosc Percutan Tech 24:296–305CrossRefPubMedGoogle Scholar
  7. 7.
    Pędziwiatr M, Małczak P, Pisarska M et al (2017) Minimally invasive versus open pancreatoduodenectomy-systematic review and meta-analysis. Langenbecks Arch Surg 402:841–851CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lyu Y, Cheng Y, Wang B et al (2018) Minimally invasive versus open pancreaticoduodenectomy: an up-to-date meta-analysis of comparative cohort studies. J Laparoendosc Adv Surg Tech A.  https://doi.org/10.1089/lap.2018.0460 CrossRefPubMedGoogle Scholar
  9. 9.
    Boggi U, Amorese G, Vistoli F et al (2015) Laparoscopic pancreaticoduodenectomy: a systematic literature review. Surg Endosc 29:9–23CrossRefPubMedGoogle Scholar
  10. 10.
    Coratti A, Di Marino M, Coratti F et al (2016) Initial experience with robotic pancreatic surgery: technical feasbility and oncological implications. Surg Laparosc Endosc Percutan Tech 26:31–37CrossRefPubMedGoogle Scholar
  11. 11.
    Zureikat AH, Moser AJ, Boone BA et al (2013) robotic pancreatic resection: safety and feasibility. Ann Surg 258(4):554–562CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Peng L, Lin S, Li Y et al (2017) Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg Endosc 31:3085–3097CrossRefPubMedGoogle Scholar
  13. 13.
    Boggi U, Palladino S, Massimetti G et al (2015) Laparoscopic robot-assisted versus open total pancreatectomy: a case-matched study. Surg Endosc 29:1425–1432CrossRefPubMedGoogle Scholar
  14. 15.
    Marino MV, Mirabella A, Guarrasi D, Lupo M, Komorowski AL (2019) Robotic-assisted repair of iatrogenic common bile duct injury after laparoscopic cholecystectomy: surgical technique and outcomes. Int J Med Robot 15(3):e1992.  https://doi.org/10.1002/rcs.1992 CrossRefPubMedGoogle Scholar
  15. 16.
    Marino MV, Gulotta G, Komorowski AL (2019) Fully robotic left hepatectomy for malignant tumor: technique and initial results. Updates Surg 71:129–135CrossRefPubMedGoogle Scholar
  16. 17.
    Marino MV, Shabat G, Guarrasi D et al (2019) Comparative study of the initial experience in performing robotic and laparoscopic right hepatectomy with technical description of the robotic technique. Dig Surg 36:241–250CrossRefPubMedGoogle Scholar
  17. 18.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  18. 19.
    Koch M, Garden OJ, Padbury R et al (2011) Bile leakage after hepatobiliary and pancreatic surgery: a definition and grading of severity by the international study group of liver surgery. Surgery 149:680–688CrossRefGoogle Scholar
  19. 20.
    Bassi C, Marchegiani G, Dervenis C et al (2017) International study group on pancreatic surgery (ISGPS). The 2016 update of the international study group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery 161:584–591CrossRefGoogle Scholar
  20. 21.
    Wente MN, Bassi C, Dervenis C et al (2007) Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 142:761–768CrossRefGoogle Scholar
  21. 22.
    Verbeke CS, Leitch D, Menon KV et al (2015) Redefining the R1 resection in pancreatic cancer. Br J Surg 93:1232–1237CrossRefGoogle Scholar
  22. 23.
    Marino MV, Shabat G, Gulotta G et al (2018) From Illusion to reality: a brief history of robotic surgery. Surg Innov 25:291–296CrossRefPubMedGoogle Scholar
  23. 24.
    Vasilescu C, Sgrabura O, Tudor S et al (2009) Robotic spleen-preserving distal pancreatectomy. A case report. Acta Chir Belg 109:396–399CrossRefPubMedGoogle Scholar
  24. 25.
    Abood GJ, Can MF, Daouadi M et al (2013) Robotic-assisted minimally invasive central pancreatectomy: technique and outcomes. J Gastrointest Surg 17:1002–1008CrossRefPubMedGoogle Scholar
  25. 26.
    Kauffmann EF, Napoli N, Menonna F et al (2016) Robotic pancreatoduodenectomy with vascular resection. Langenbecks Arch Surg 401:1111–1122CrossRefPubMedGoogle Scholar
  26. 27.
    Levi Sandri GB, de Werra E, Mascianà G et al (2017) The use of robotic surgery in abdominal organ transplantation: a literature review. Clin Transplant.  https://doi.org/10.1111/ctr.12856 CrossRefPubMedGoogle Scholar
  27. 28.
    Nussbaum DP, Adam MA, Youngwirth LM et al (2016) Minimally invasive pancreaticoduodenectomy does not improve use for time to initiation of adjuvant chemotherapy for patients with pancreatic adenocarcinoma. Ann Surg Oncol 23:1026–1033CrossRefPubMedGoogle Scholar
  28. 29.
    Adam MA, Choudhury K, Dinan MA et al (2015) Minimally invasive versus open pancreaticoduodenectomy for cancer: practice patterns and short-term outcomes among 7601 patients. Ann Surg 262:372–377CrossRefPubMedGoogle Scholar
  29. 30.
    Rosemurgy A, Ross S, Bordeau T et al (2019) Robotic pancreaticoduodenectomy is the future: here and now. J Am Coll Surg.  https://doi.org/10.1016/j.jamcollsurg.2018.12.040 CrossRefPubMedGoogle Scholar
  30. 31.
    Zureikat AH, Postlewait LM, Liu Y et al (2016) A Multi-institutional comparison of perioperative outcomes of robotic and open pancreaticoduodenectomy. Ann Surg 264:640–649CrossRefPubMedGoogle Scholar
  31. 32.
    Zureikat AH, Moser AJ, Boone BA et al (2013) Robotic pancreatic resection: safety and feasibility. Ann Surg 258:554–562CrossRefPubMedPubMedCentralGoogle Scholar
  32. 33.
    Liao CH, Wu YT, Liu YY et al (2016) Systematic review of the feasibility and advantage of minivasive pancreaticoduodenectomy. World J Surg 40:1218–1225CrossRefPubMedGoogle Scholar
  33. 34.
    Zeh HJ, Zureikat AH, Secrest A et al (2012) Outcomes after robot-assisted pancreaticoduodenectomy for periampullary lesions. Ann Surg Oncol 19:864–870CrossRefPubMedGoogle Scholar
  34. 35.
    Polanco PM, Zenati MS, Hogg ME et al (2016) An analysis of risk factors for pancreatic fistula after robotic pancreaticoduodenectomy: outcomes from a consecutive series of standardized pancreatic reconstructions. Surg Endosc 30:1523–1529CrossRefPubMedGoogle Scholar
  35. 36.
    Hu BY, Wan T, Zhang WZ, Dong JH (2016) Risk factors for postoperative pancreatic fistula: analysis of 539 successive cases of pancreaticoduodenectomy. World J Gastroenterol 22(34):7797–7805CrossRefPubMedPubMedCentralGoogle Scholar
  36. 37.
    Malgras B, Duron S, Gaujoux S et al (2016) Early biliary complications following pancreaticoduodenectomy: prevalence and risk factors. HPB (Oxford) 18:367–374CrossRefGoogle Scholar
  37. 38.
    Wright GP, Zureikat AH (2016) Development of minimally invasive pancreatic surgery: an evidence-based systematic review of laparoscopic versus robotic approaches. J Gastrointest Surg 20:1658–1665CrossRefPubMedGoogle Scholar
  38. 39.
    Giulianotti PC, Sbrana F, Bianco FM et al (2010) Robot-assisted laparoscopic pancreatic surgery: single-surgeon experience. Surg Endosc 24:1646–1657CrossRefPubMedGoogle Scholar
  39. 40.
    Croome KP, Farnell MB, Que FG et al (2014) Total laparoscopic pancreatoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg 260:633–640CrossRefPubMedGoogle Scholar
  40. 41.
    Boone BA, Zenati M, Hogg ME et al (2015) Assesment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg 29:9–23Google Scholar
  41. 42.
    Correa-Gallego C, Dinkelspiel HE, Sulimanoff I et al (2014) Minimally-invasive vs open pancreaticoduodenectomy: systematic review and meta-analysis. J Am Coll Surg 218:129–139CrossRefPubMedGoogle Scholar
  42. 43.
    Alexander M, Blum R, Burbury K et al (2017) Timely initiation of chemotherapy: a systematic literature review of six priority cancers - results and recommendations for clinical practice. Intern Med J 47:16–34CrossRefPubMedGoogle Scholar
  43. 44.
    Boggi U, Napoli N, Costa F et al (2016) Robotic-assisted pancreatic resection. World J Surg 40:2497–2506CrossRefPubMedGoogle Scholar
  44. 45.
    Baker EH, Ross SW, Seshadri R et al (2015) Robotic pancreaticoduodenectomy for pancreatic adenocarcinoma: role in 2014 and beyond. J Gastrointest Oncol 6:396–405PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SurgeryPalermo UniversityPalermoItaly
  2. 2.Department of General and Digestive SurgeryHospital Universitario Marquès de ValdecillaSantanderSpain
  3. 3.Department of General, Emergency and Minimally Invasive SurgeryCagliari University Hospital “Policlinico D. Casula”CagliariItaly
  4. 4.Department of Emergency SurgeryAzienda Ospedaliera Ospedali Riuniti Villa Sofia-CervelloPalermoItaly
  5. 5.Department of Surgical Innovation and Robotic SurgeryHospital Universitario Marquès de ValdecillaSantanderSpain

Personalised recommendations