Journal of Robotic Surgery

, Volume 11, Issue 2, pp 235–238 | Cite as

“Plug and Play”: a novel technique utilising existing technology to get the most out of the robot

  • Todd G. Manning
  • Daniel Christidis
  • Jasamine Coles-Black
  • Shannon McGrath
  • Jonathan O’Brien
  • Jason Chuen
  • Damien Bolton
  • Nathan Lawrentschuk
Brief Communication

Abstract

We describe a simple technique in which current and freely available technology can be utilised by surgeons while operating the Da Vinci Si/Xi Surgical Robotic systems. This technique allows for a parallel intraoperative display within the surgical console of any desired subject material from a standard computer, utilising commercially available cabling. The ability to view 3D reconstructed images, patient radiology and patient results within the console whilst operating, has the potential to increase operative efficiency, reduce error and aid in adequate resection of tissues. The ease with which our technique is achieved, the benefits of its use and the low cost associated with its implementation support our suggestion that all robotic surgeons incorporate this into their regular operative setup.

Keywords

Robotic surgery TilePro™ Intraoperative display Console display 3D images 

Notes

Acknowledgements

The authors would like to acknowledge the time and support offered by Device Technologies Victoria, Australia and Tim Grogan for their support and technological expertise in troubleshooting this project during its infancy.

Compliance with ethical standards

Conflict of interest

The Authors: Todd G Manning, Daniel Christidis, Jasamine Coles-Black, Shannon McGrath, Jonathan O’Brien, Jason Chuen, Damien Bolton and Nathan Lawrentschuk declare that they have no conflict of interest.

Disclosures

There are no disclosures. The corresponding author is not a recipient of a scholarship. This paper is not based on previous communication to a society or meeting.

References

  1. 1.
    Jacob BP, Gagner M (2003) Robotics and general surgery. Surg Clin North Am 83(6):1405–1419. doi: 10.1016/S0039-6109(03)00159-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Nguan C, Girvan A, Luke PP (2008) Robotic surgery versus laparoscopy; a comparison between two robotic systems and laparoscopy. J Robot Surg 1(4):263–268. doi: 10.1007/s11701-007-0050-x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Talamini MA, Chapman S, Horgan S, Melvin WS, Academic Robotics G (2003) A prospective analysis of 211 robotic-assisted surgical procedures. Surg Endosc 17(10):1521–1524. doi: 10.1007/s00464-002-8853-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Kockerling F (2014) Robotic vs. standard laparoscopic technique—what is better? Front Surg 1:15. doi: 10.3389/fsurg.2014.00015 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ran L, Jin J, Xu Y, Bu Y, Song F (2014) Comparison of robotic surgery with laparoscopy and laparotomy for treatment of endometrial cancer: a meta-analysis. PLoS One 9(9):e108361. doi: 10.1371/journal.pone.0108361 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tolboom RC, Draaisma WA, Broeders IA (2016) Evaluation of conventional laparoscopic versus robot-assisted laparoscopic redo hiatal hernia and antireflux surgery: a cohort study. J Robot Surg 10(1):33–39. doi: 10.1007/s11701-016-0558-z CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Woo Y, Choi GH, Min BS, Hyung WJ (2014) Novel application of simultaneous multi-image display during complex robotic abdominal procedures. BMC Surg 14:13. doi: 10.1186/1471-2482-14-13 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ploch CC, Mansi CS, Jayamohan J, Kuhl E (2016) Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg 90:668–674. doi: 10.1016/j.wneu.2016.02.081 CrossRefPubMedGoogle Scholar
  9. 9.
    Simpfendorfer T, Li Z, Gasch C, Drosdzol F, Fangerau M, Muller M, Maier-Hein L, Hohenfellner M, Teber D (2016) Three-dimensional reconstruction of preoperative imaging improves surgical success in laparoscopy. J Laparoendosc Adv Surg Tech A. doi: 10.1089/lap.2016.0424 PubMedGoogle Scholar
  10. 10.
    Chen Y, Li H, Wu D, Bi K, Liu C (2014) Surgical planning and manual image fusion based on 3D model facilitate laparoscopic partial nephrectomy for intrarenal tumors. World J Urol 32(6):1493–1499. doi: 10.1007/s00345-013-1222-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Marescaux J, Diana M (2015) Inventing the future of surgery. World J Surg 39(3):615–622. doi: 10.1007/s00268-014-2879-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Lee S-L, Lerotic M, Vitiello V, Giannarou S, Kwok K-W, Visentini-Scarzanella M, Yang G-Z (2010) From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Comput Med Imaging Graph 34(1):33–45. doi: 10.1016/j.compmedimag.2009.07.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Todd G. Manning
    • 1
    • 2
  • Daniel Christidis
    • 1
    • 2
  • Jasamine Coles-Black
    • 3
  • Shannon McGrath
    • 1
    • 2
  • Jonathan O’Brien
    • 1
    • 2
  • Jason Chuen
    • 3
  • Damien Bolton
    • 1
  • Nathan Lawrentschuk
    • 1
    • 4
    • 5
  1. 1.Department of Surgery, Austin HealthUniversity of MelbourneMelbourneAustralia
  2. 2.Young Urology Researchers Organisation (YURO)MelbourneAustralia
  3. 3.Department of Vascular SurgeryAustin HealthMelbourneAustralia
  4. 4.Department of Surgical OncologyPeter MacCallum Cancer CentreMelbourneAustralia
  5. 5.Olivia Newton-John Cancer Research InstituteMelbourneAustralia

Personalised recommendations