Journal of Robotic Surgery

, Volume 7, Issue 1, pp 53–57 | Cite as

Measurements of the contact force from myenteric contractions on a solid bolus

  • Benjamin S. Terry
  • Jonathan A. Schoen
  • Mark E. Rentschler
Original Article


The development of robotic capsule endoscopes (RCEs) is one avenue presently investigated by multiple research groups to minimize invasiveness and enhance outcomes of enteroscopic procedures. Understanding the biomechanical response of the small bowel to RCEs is needed for design optimization of these devices. In previous work, the authors developed, characterized, and tested the migrating motor complex force sensor (MFS), a novel sensor for quantifying the contact forces per unit of axial length exerted by the myenteron on a solid bolus. This work is a continuation, in which the MFS is used to quantify the contractile strength in the small intestine proximal, middle, and distal regions of five live porcine models. The MFSs are surgically implanted in a generally anesthetized animal, and force data from 5 min of dwell time are analyzed. The mean myenteric contact force from all porcine models and locations within the bowel is 1.9 ± 1.0 N cm−1. Examining the results based on the small bowel region shows a statistically significant strengthening trend in the contractile force from proximal to middle to distal with mean forces of 1.2 ± 0.5, 1.9 ± 0.9, and 2.3 ± 1.0 N cm−1, respectively (mean ± one standard deviation). Quantification of the contact force against a solid bolus provides developers of RCEs with a valuable, experimentally derived parameter of the intraluminal environment.


Small intestine Contact force In vivo Migrating motor complex force sensor 


  1. 1.
    Leighton JA, Legnani P, Seidman EG (2007) Role of capsule endoscopy in inflammatory bowel disease: where we are and where we are going. Inflamm Bowel Dis 13:331–337PubMedCrossRefGoogle Scholar
  2. 2.
    Upchurch BR, Vargo JJ (2008) Small bowel enteroscopy. Rev Gastroenterol Disord 8:169–177PubMedGoogle Scholar
  3. 3.
    Phee L, Accoto D, Menciassi A, Stefanini C, Carrozza MC, Dario P (2002) Analysis and development of locomotion devices for the gastrointestinal tract. Biomed Eng, IEEE Trans on 49:613–616CrossRefGoogle Scholar
  4. 4.
    Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C-N, Schostek S, Schurr MO (2008) Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest Endosc 67:1153–1158PubMedCrossRefGoogle Scholar
  5. 5.
    Glass P, Cheung E, Sitti M (2008) A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. Biomed Eng, IEEE Transact on 55:2759–2767CrossRefGoogle Scholar
  6. 6.
    Wang K, Yan G, Ma G, Ye D (2009) An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Ann Biomed Eng 37:210–221PubMedCrossRefGoogle Scholar
  7. 7.
    Dodou D, Breedveld P, Wieringa P (2005) Friction manipulation for intestinal locomotion. Minim Invasive Ther Allied Technol 14:188–197PubMedCrossRefGoogle Scholar
  8. 8.
    Dodou D, van den Berg M, van Gennip J, Breedveld P, Wieringa PA (2008) Mucoadhesive films inside the colonic tube: performance in a three-dimensional world. J R Soc Interface 5:1353–1362PubMedCrossRefGoogle Scholar
  9. 9.
    Harding SE (2003) Mucoadhesive interactions. Biochem Soc Trans 31:1036–1041PubMedCrossRefGoogle Scholar
  10. 10.
    Sliker LJ, Wang X, Schoen JA, Rentschler ME (2010) Micropatterned treads for in vivo robotic mobility. J Med Devices 4:041006–041008CrossRefGoogle Scholar
  11. 11.
    Miftahof RN (2005) The wave phenomena in smooth muscle syncytia. In Silico Biol (Gedrukt) 5:479–498Google Scholar
  12. 12.
    Mortazavi S, Smart J (1995) An investigation of some factors influencing the in vitro assessment of mucoadhesion. Int J Pharma 116:223–230CrossRefGoogle Scholar
  13. 13.
    Hoeg HD, Slatkin AB, Burdick JW, Grundfest WS (2000) Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope. In: Robotics and automation, 2000. Proc ICRA’00. IEEE Int Conf, San Francisco, pp 1599–1606Google Scholar
  14. 14.
    Higa M, Luo Y, Okuyama T, Takagi T (2007) Characterization of the passive mechanical properties of large intestine. Int J Appl Electromagnet Mech 25:595–599Google Scholar
  15. 15.
    Macagno EO, Christensen J (1980) Fluid mechanics of the duodenum. Annu Rev Fluid Mech 12:139–158CrossRefGoogle Scholar
  16. 16.
    Ciarletta P, Dario P, Tendick F, Micera S (2009) Hyperelastic model of anisotropic fiber reinforcements within intestinal walls for applications in medical robotics. Int J Robot Res 28:1279–1288CrossRefGoogle Scholar
  17. 17.
    Egorov VI, Schastlivtsev IV, Prut EV, Baranov AO, Turusov RA (2002) Mechanical properties of the human gastrointestinal tract. J Biomech 35:1417–1425PubMedCrossRefGoogle Scholar
  18. 18.
    Jørgensen CS, Assentoft JE, Knauss D, Gregersen H, Briggs GAD (2001) Small intestine wall distribution of elastic stiffness measured with 500 MHz scanning acoustic microscopy. Ann Biomed Eng 29:1059–1063PubMedCrossRefGoogle Scholar
  19. 19.
    Terry BS, Lyle AB, Schoen JA, Rentschler ME (2011) Preliminary mechanical characterization of the small bowel for in vivo robotic mobility. ASME J Biomech Eng 133(9):091010–091017Google Scholar
  20. 20.
    Samsom M, Smout AJPM, Hebbard G, Fraser R, Omari T, Horowitz M, Dent J (1998) A novel portable perfused manometric system for recording of small intestinal motility. Neurogastroenterol Motil 10:139–148PubMedCrossRefGoogle Scholar
  21. 21.
    Clinton Texter E (1968) Pressure and transit in the small intestine. Dig Dis Sci 13:443–454CrossRefGoogle Scholar
  22. 22.
    Miftahof R, Akhmadeev N (2007) Dynamics of intestinal propulsion. J Theor Biol 246:377–393PubMedCrossRefGoogle Scholar
  23. 23.
    Miftahof R, Fedotov E (2005) Intestinal propulsion of a solid non-deformable bolus. J Theor Biol 235:57–70PubMedCrossRefGoogle Scholar
  24. 24.
    Terry BS, Schoen JA, Rentschler ME (2012) Characterization and experimental results of a novel sensor for measuring the contact force from myenteric contractions. IEEE Transact Biomed EngGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2012

Authors and Affiliations

  • Benjamin S. Terry
    • 1
  • Jonathan A. Schoen
    • 2
  • Mark E. Rentschler
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Colorado at BoulderBoulderUSA
  2. 2.University of Colorado HospitalAuroraUSA

Personalised recommendations