Journal of Robotic Surgery

, Volume 6, Issue 1, pp 5–12 | Cite as

Magnetic propulsion and ultrasound tracking of endovascular devices

  • S. Tognarelli
  • V. Castelli
  • G. Ciuti
  • C. Di Natali
  • E. Sinibaldi
  • P. Dario
  • A. MenciassiEmail author
Original Article


In this paper a robotic means of magnetic navigation of an endovascular device a few millimeters in diameter is presented. The technique, based on traditional computer-assisted surgery adapted to intravascular medical procedures, includes a manipulator for magnetic dragging interfaced with an ultrasound system for tracking the endovascular device. The main factors affecting device propulsion are theoretically analyzed, including magnetic forces, fluidic forces, and friction forces between the endovascular device and the vessel. A dedicated set-up for measuring locomotion, and for navigation with and against the flow, has been developed and preliminary tests have been performed to derive the best configuration for controlled magnetic dragging in the vascular system. Experimental outcomes are consistent with a simple analytical model that analyzes dragging of the magnetic capsule in a tube. By means of this model, different working conditions can be considered to select the appropriate conditions, for example flow rate, coefficient of friction, or magnetic properties.


Magnetic propulsion Ultrasound tracking Vascular surgery Robotics Computer-assisted surgery 



This work was supported by the Fondazione Cassa di Risparmio di Pisa in the framework of the Micro-VAST project ( The authors wish to thank A. Melani and N. Funaro for their help with manufacture of the equipment, and P. Miloro for his help with development of the equipment. We would like thank P. Valdastri for his suggestions and support and G. Lucarini for providing coefficient of friction values.

Conflict of interest


Supplementary material

Supplementary material 1 (WMV 3901 kb)

Supplementary material 2 (WMV 1604 kb)


  1. 1.
    Naghavi M, Falk E, Hecht HS, Jamieson MJ, Kaul S, Berman D et al (2006) From vulnerable plaque to vulnerable patient-part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) task force report. Am J Cardiol 98(2):2–15CrossRefGoogle Scholar
  2. 2.
    Casscells W, Naghavi M, Willerson JT (2003) Vulnerable atherosclerotic plaque–a multifocal disease. Circulation 107(16):2072–2075PubMedCrossRefGoogle Scholar
  3. 3.
    Bourantas CV, Garg S, Naka KK, Thury A, Hoye A, Michalis LK (2011) Focus on the research utility of intravascular ultrasound-comparison with other invasive modalities. Cardiovasc Ultrasoun 9(2):1–10Google Scholar
  4. 4.
    Chun KRJ, Schmidt B, Köktürk B, Tilz R, Fürnkranz A, Konstantinidou M et al (2008) Catheter ablation-new developments in robotics. Herz 33(8):586–589PubMedCrossRefGoogle Scholar
  5. 5.
    SenseiTM Robotic Navigation System (2011) [Online] Available: Accessed 7 Sept 2011
  6. 6.
    CorPath® 200 System (2011) [Online] Available: Accessed 9 Sept 2011
  7. 7.
    NiobeTM Remote Controlled Magnetic Navigation System (2011) [Online] Available: Accessed 9 Sept 2011
  8. 8.
    Pan Q, Guo S, Okada T (2010) Development of a wireless hybrid microrobot for biomedical applications. Conf Proc IEEE/RSJ Int Conf Intell Rob Syst 2010:5768–5773Google Scholar
  9. 9.
    Fountain TWR, Kailat PV, Abbott JJ (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. Conf Proc IEEE Rob Aut 2010:576–581Google Scholar
  10. 10.
    Martel S, Mohammadi M, Lu OZ, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582CrossRefGoogle Scholar
  11. 11.
    Arcese L, Cherry A, Fruchard M, Ferreira A (2010) Optimal trajectory for a microrobot navigating in blood vessels. Conf Proc IEEE Eng Med Bio Soc 2010:1950–1953Google Scholar
  12. 12.
    Choi H, Choi J, Jeong S, Yu C, Park JO, Park S (2009) Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system. Smart Mater Struct 18(11):115017–115023CrossRefGoogle Scholar
  13. 13.
    Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25(5):527–536CrossRefGoogle Scholar
  14. 14.
    Nelson BJ, Kaliakatsos IK, Abbot JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85PubMedCrossRefGoogle Scholar
  15. 15.
    Saam T, Hatsukam TS, Yarnykh VL, Hayes CE, Underhill H, Chu BC et al (2007) Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and general electric scanners. J Magn Reson Imaging 26(2):344–352PubMedCrossRefGoogle Scholar
  16. 16.
    Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241(2):459–468PubMedCrossRefGoogle Scholar
  17. 17.
    Saba L, Caddeo G, Sanfilippo R, Montisci R, Mallarini G (2007) Efficacy and sensitivity of axial scans and different reconstruction methods in the study of the ulcerated carotid plaque using multidetector-row CT angiography: comparison with surgical results. Am J Neuroradiol 28(4):716–723PubMedGoogle Scholar
  18. 18.
    Whittingham TA (2007) Medical diagnostic applications and sources. Prog Biophys Mol Biol 93(1):84–110PubMedCrossRefGoogle Scholar
  19. 19.
    Kakkos SK, Stevens JM, Nicolaides AN, Kyriacou E, Pattichis CS, Geroulakos G et al (2007) Texture analysis of ultrasonic images of symptomatic carotid plaques can identify those plaques associated with ipsilateral embolic brain infarction. Eur J Vasc Endovasc 33(4):422–429CrossRefGoogle Scholar
  20. 20.
    Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15(5):946–959PubMedCrossRefGoogle Scholar
  21. 21.
    Chinzei K, Kikinis R, Jolesz FA (1999) MR compatibility of mechatronic devices: design criteria. Conf Proc Med Image Comput Comput Assist Interv 1999:1020–1030Google Scholar
  22. 22.
    Xu XC, Hu CH, Sun L, Yen J, Shung KK (2005) High-frequency high frame rate ultrasound imaging system for small animal imaging with linear arrays. Conf Proc IEEE Int Ultrason Symp 2005:1431–1434Google Scholar
  23. 23.
    Ciuti G, Valdastri P, Menciassi A, Dario P (2010) Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28(2):199–207CrossRefGoogle Scholar
  24. 24.
    White FH (1991) Viscous fluid flow. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Simi M, Ciuti G, Tognarelli S, Valdastri P, Menciassi A, Dario P (2010) Magnetic link design for a robotic laparoscopic camera. J Appl Phys 107(9):302–303CrossRefGoogle Scholar
  26. 26.
    Prokopovich P, Perni S (2010) Prediction of the frictional behavior of mammalian tissues against biomaterials. Acta Biomater 6:4052–4059PubMedCrossRefGoogle Scholar
  27. 27.
    Takashimaa K, Shimomuraa R, Kitoua T, Teradaa H, Yoshinakab K, Ikeuchia K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40:319–328CrossRefGoogle Scholar
  28. 28.
    Salerno M, Ciuti G, Lucarini G, Rizzo R, Valdastri P, Menciassi A, Landi A, Dario P (2012) A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing. Meas Sci Technol. 23(1). doi: 10.1088/0957-0233/23/1/015701
  29. 29.
    Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y (2010) Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 63(5):1230–1237PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd 2011

Authors and Affiliations

  • S. Tognarelli
    • 1
  • V. Castelli
    • 1
    • 2
  • G. Ciuti
    • 1
  • C. Di Natali
    • 3
  • E. Sinibaldi
    • 2
  • P. Dario
    • 1
  • A. Menciassi
    • 1
    Email author
  1. 1.The BioRobotics Institute @ Scuola Superiore Sant’AnnaPontederaItaly
  2. 2.Istituto Italiano di Tecnologia, Center for Micro-BioRobotics@SSSAPontederaItaly
  3. 3.Vanderbilt UniversityNashvilleUSA

Personalised recommendations