, Volume 11, Issue 1, pp 127–151 | Cite as

Long waves in prices: new evidence from wavelet analysis

  • Marco GallegatiEmail author
  • Mauro Gallegati
  • James B. Ramsey
  • Willi Semmler
Original Paper


In this paper we apply wavelet analysis to study the dynamics of long-term movements in wholesale prices for the USA, the UK and France over the period 1791–2012. The application of wavelet analysis to long-term historical price series allows us to detect long waves in prices whose periodization is remarkably similar to those provided in the literature for the pre-World War II period. Moreover, we find evidence on the existence of long waves in prices also after World War II, a period in which long waves are generally difficult to detect because of the positive trend displayed by prices. The comparison between the long wave components extracted through wavelets and the Christiano–Fitzgerald band-pass filter suggests that wavelets provide a reliable and straightforward technique for analyzing long waves dynamics in time series exhibiting quite complex patterns such as historical data.


Long waves Wavelets Band-pass filter Wholesale prices 

JEL Classification

B1 B2 B5 C1 E3 



A preliminary version of the paper has been presented at the 16th Conference of the Association for Heterodox Economics, University of Greenwich, London, Uk, 2–4 July 2014. We thank participant for their useful comments. We would like to thank three anonymous reviewers whose careful reading and valuable comments considerably improved our original text. The responsibility for all remaining errors is, of course, ours.


  1. Andrews DWK, Lee I, Ploberger W (1996) Optimal change-point tests for normal linear regression. J Econom 70:9–38CrossRefGoogle Scholar
  2. Bai J (1994) Least squares estimation of a shift in linear processes. J Time Ser Anal 15:453–472CrossRefGoogle Scholar
  3. Bai J (1997a) Estimating multiple breaks one at a time. Econom Theory 13:315–352CrossRefGoogle Scholar
  4. Bai J (1997b) Estimation of a change point in multiple regression models. Rev Econ Stat 79:551–563CrossRefGoogle Scholar
  5. Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66:47–78CrossRefGoogle Scholar
  6. Bai J, Perron P (2003) Computation and analysis of multiple structural change models. J Appl Econom 18:1–22CrossRefGoogle Scholar
  7. Baxter M (1994) Real exchange rates and real interest differentials: have we missed the business-cycle relationship? J Monet Econ 33:5–37CrossRefGoogle Scholar
  8. Baxter M, King R (1999) Measuring business cycles: approximate band-pass filters for economic time series. Rev Econ Stat 81:575–593CrossRefGoogle Scholar
  9. Bernard L, Gevorkyan A, Palley T, Semmler W (2014) Time scales and mechanisms of economic cycles: a review of theories of long waves. Rev Keynes Econ 2:87–107CrossRefGoogle Scholar
  10. Berry BJL (2006) Recurrent instabilities in K-wave macrohistory. In: Devezas TC (ed) Kondratieff waves, warfare and world security. IOS Press, Amsterdam, pp 22–29Google Scholar
  11. Berry BJL, Kim H, Kim H-M (1993) Are long waves driven by techno-economic transformations? Technol Forecast Soc Change 44:111–135CrossRefGoogle Scholar
  12. Bieshaar H, Kleinknecht A (1984) Kondratieff long waves in aggregate output? an econometric test. Konjunkturpolitik 30:279–303Google Scholar
  13. Bosserelle E (1991) Les fluctuations longues de prix de type Kondratieff. Thèse de doctorat nouveau régime en sciences économiques, Université de ReimsGoogle Scholar
  14. Bosserelle E (2001) Le cycle Kondratieff : mythe ou réalité? Futuribles International, numéro 16, LIPS, DATAR, Commissariat Général du PlanGoogle Scholar
  15. Bosserelle E (2012) La croissance économique dans le long terme: S. Kuznets versus N.D. Kondratiev - Actualité d’une controverse apparue dans l’entre-deux-guerres. Economies et Sociétés, Cahiers de l’ISMEA, série Histoire économique quantitative, AF, 45:1655–1688Google Scholar
  16. Bosserelle E (2013) Les études empiriques menées sur les cycles longs depuis le début des années 1980: Quels enseignements? In: Diemer A, Borodak D, Dozolme S (eds). Heurs et malheurs du capitalisme, Editions Oeconomia, pp 132–154Google Scholar
  17. Bossier F, Hugé P (1981) Une vérification empirique de l’existence de cycles longs á partir de données belges. Cahiers économiques de Bruxelles 90:253–267Google Scholar
  18. Burns AF, Mitchell WC (1946) Cyclical changes in cyclical behavior. In: Burns AF, Mitchell WC (eds) Measuring business cycles. NBER, New York, pp 424–471Google Scholar
  19. Christiano LJ, Fitzgerald TJ (2003) The band pass filter. Int Econ Rev 44(2):435–465CrossRefGoogle Scholar
  20. Clark C (1944) The economics of 1960. MacMillan, LondonGoogle Scholar
  21. Crowley P (2007) A guide to wavelets for economists. J Econ Surv 21:207–267CrossRefGoogle Scholar
  22. Darné O, Diebolt C (2004) Unit roots and infrequent large shocks: new international evidence on output. J Monet Econ 51:1449–1465CrossRefGoogle Scholar
  23. Daubechies I (1992) Ten lectures on wavelets. In: CBSM-NSF regional conference series in applied mathematics, vol 61. SIAM, PhiladelphiaGoogle Scholar
  24. de Wolff S (1924) Prosperitats-und Depressionsperioden. In: Jensen O (ed) Der Lebendige Marxismus. Thuringer Verlagsanstalt, Jena, pp 13–43Google Scholar
  25. Diebolt C (2005) Long cycles revisited—an essay in econometric history. Economies et Sociétés, série Histoire économique quantitative AF 32:23–47Google Scholar
  26. Diebolt C, Doliger C (2006) Economic cycles under test: a spectral analysis. In: Devezas TC (ed) Kondratieff waves, warfare and world security. IOS Press, Amsterdam, pp 39–47Google Scholar
  27. Diebolt C, Doliger C (2007) Retour sur la périodicité d’une nébuleuse: le cycle économique. Réponse à Eric Bosserelle. Economie Appliquée 50:199–204Google Scholar
  28. Diebolt C, Doliger C (2008) New international evidence on the cyclical behaviour of output: Kuznets swings reconsidered. Quality and quantity. Int J Methodol 42:719–737Google Scholar
  29. Dupriez LH (1951) Des mouvements économiques généraux, Tomes 1 et 2. Edition Nauwelaerts, LouvainGoogle Scholar
  30. Englund P, Persson T, Svensson L (1992) Swedish business cycles: 1861–1988. J Monet Econ 30:343–371CrossRefGoogle Scholar
  31. Erten B, Ocampo JA (2013) Super cycles of commodity prices since the mid nineteenth century. World Dev 44:14–30CrossRefGoogle Scholar
  32. Everts M (2006) Band-pass filters. Munich Personal RePec Archive Paper no. 2049Google Scholar
  33. Freeman C, Louçã F (2001) As time goes by: from the industrial revolution to the information revolution. Oxford University Press, OxfordGoogle Scholar
  34. Gençay R, Selçuk F, Whitcher B (2002) An introduction to wavelets and other filtering methods in finance and economics. San Diego Academic Press, San DiegoGoogle Scholar
  35. Gençay R, Gradojevic N, Selçuk F, Whitcher B (2010) Asymmetry of information flow between volatilities across time scales. Quant Finance 10:895–915CrossRefGoogle Scholar
  36. Gerster HJ (1988) Lange Wellen wirtschaftlicher Entwicklung. Lang, FrankfurtGoogle Scholar
  37. Gerster HJ (1992) Testing long waves in price and volume series from Sixteen Countries. In: Kleinknecht A, Mandel E, Wallerstein I (eds) New findings in long wave research. St Martin’s Press, New York, pp 120–147CrossRefGoogle Scholar
  38. Goldstein JS (1988) Long cycles: prosperity and war in the modern age. Yale University Press, New HavenGoogle Scholar
  39. Goldstein JP (1999) The existence, endogeneity and synchronization of long waves: structural time series model estimates. Rev Radic Polit Econ 31:61–101CrossRefGoogle Scholar
  40. Granger WJ (1961) The typical spectral shape of an economic variable. Econometrica 34:150–161CrossRefGoogle Scholar
  41. Hassler J, Lundvik P, Persson T, Söderlind P (1994) The Swedish business cycle: stylized facts over 130 years. In: Bergstrom V, Vredin A (eds) Measuring and interpreting business cycles. Clarendon Press, Oxford, pp 11–108Google Scholar
  42. Haustein HD, Neuwirth E (1982) Long waves in world industrial production, energy consumption, innovations, inventions, and patents and their identification by spectral analysis. Technol Forecast Soc Change 22:53–89CrossRefGoogle Scholar
  43. Imbert G (1959) Des mouvements de longue durée Kondratieff. Thèse, Aix. La pensée universitaire, 1960Google Scholar
  44. Jacks DS (2013) From boom to bust: a typology of real commodity prices in the long run. NBER, WP no. 18874Google Scholar
  45. Jerrett D, Cuddington JT (2008) Broadening the statistical search for metal price super cycles to steel and related metals. Resour Policy 33:188–195CrossRefGoogle Scholar
  46. Kondratieff ND (1926) The major cycles of the conjuncture and the theory of forecast. Economika, MoscowGoogle Scholar
  47. Kondratieff ND (1935) The long waves in economic life. Rev Econ Stat 17:105–115CrossRefGoogle Scholar
  48. Kondratieff ND (1992) Les grands cycles de la conjoncture. Economica, ParisGoogle Scholar
  49. Korotayev AV, Tsirel SV (2010) A spectral analysis of world GDP dynamics: Kondratieff waves, Kuznets swings, Juglar and Kitchin cycles in global economic development, and the 2008–2009 economic crisis. Struct Dyn 4:3–57Google Scholar
  50. Kriedel N (2009) Long waves of economic development and the diffusion of general-purpose technologies: the case of railway networks. Economies et Sociétés, série Histoire économique quantitative, AF 40:877–900Google Scholar
  51. Kuczynski T (1978) Spectral analysis and cluster analysis as mathematical methods for the periodization of historical processes. Kondratieff cycles—appearance or reality? In: Proceedings of the seventh international economic history congress, vol 2. International Economic History Congress, Edinburgh, pp 79–86Google Scholar
  52. Lewis WA (1978) Growth and fluctuations 1870–1913. George Allen and Unwin, LondonGoogle Scholar
  53. Lothian JR, Taylor MP (1996) Real exchange rate behavior: the recent float from the perspective of the past two centuries. J Polit Econ 104:488–509CrossRefGoogle Scholar
  54. Lucas RE (1977) Understanding business cycles. Carnegie-Rochester Conf Ser Public Policy 5:7–29CrossRefGoogle Scholar
  55. Mandel E (1975) Long waves in the history of capitalism. In: Review NL (ed) Late capitalism. NLB, London, pp 108–146Google Scholar
  56. Metz R (1992) A Re-examination of long waves in aggregate production series. In: Kleinknecht A, Mandel E, Wallerstein I (eds) New findings in long waves research. St. Martin’s Press, New York, pp 80–119CrossRefGoogle Scholar
  57. Metz R (2006) Empirical evidence and causation of Kondratieff cycles. In: Devezas TC (ed) Kondratieff waves, warfare and world security. IOS Press, Amsterdam, pp 91–99Google Scholar
  58. Metz R (2009) Comment on Stock markets and business cycle comovement in Germany before world war I: evidence from spectral analysis. J Macroecon 31:58–67CrossRefGoogle Scholar
  59. Metz R (2011) Do Kondratieff waves exist? How time series techniques can help to solve the problem. Cliometrica 5:205–238CrossRefGoogle Scholar
  60. Metz R, Stier W (1992) Modelling the long wave-phenomena. Hist Soc Res 17:43–62CrossRefGoogle Scholar
  61. Mosekilde E, Rasmussen S (1989) Empirical indication of economic long waves in aggregate production. Eur J Oper Res 42:279–293CrossRefGoogle Scholar
  62. Percival DB, Mojfeld H (1997) Analysis of subtidal coastal sea level fluctuations using wavelets. J Am Stat Assoc 92:868–880CrossRefGoogle Scholar
  63. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Proietti T (2011) Trend estimation. In: Lovric M (ed) International encyclopedia of statistical science, 1st edn. Springer, BerlinGoogle Scholar
  65. Ramsey JB (2010) Wavelets. In: Durlauf SN, Blume LE (eds) The new Palgrave dictionary of economics. Palgrave Macmillan, Basingstoke, pp 391–398Google Scholar
  66. Ramsey JB (2014) Functional representation, approximation, bases and wavelets. In: Marco Gallegati, Semmler W (eds) Wavelet applications in economics and finance. Springer, Heidelberg, pp 1–20Google Scholar
  67. Ramsey JB, Zhang Z (1995) The analysis of foreign exchange data using waveform dictionaries. J Empir Finance 4:341–372CrossRefGoogle Scholar
  68. Ramsey JB, Zhang Z (1996) The application of waveform dictionaries to stock market index data. In: Kravtsov YA, Kadtke J (eds) Predictability of complex dynamical systems. Springer, Berlin, pp 189–208CrossRefGoogle Scholar
  69. Reijnders JPG (1990) Long waves in economic development. Edward Elgar, AldershotGoogle Scholar
  70. Rostow WW (1978) The world economy: history and prospect. University of Texas Press, AustinCrossRefGoogle Scholar
  71. Schumpeter JA (1939) Business cycles. McGraw-Hill, New YorkGoogle Scholar
  72. Solomou S (1990) Phases of economic growth 1850–1973. Kondratieff waves and Kuznets swings. Cambridge University Press, CambridgeGoogle Scholar
  73. Stier W (1989) Basic concepts and new methods of time series analysis. Hist Soc Res 14:3–24Google Scholar
  74. Strang G (1993) Wavelet transforms versus Fourier transforms. Bull Am Math Soc 28:288–305CrossRefGoogle Scholar
  75. Taylor JB (1988) Long waves in six nations: results and speculations from a new methodology. Review 9:373–392Google Scholar
  76. van Duijn JJ (1979) The long wave in economic life. Economist 125:544–576CrossRefGoogle Scholar
  77. van Duijn JJ (1983) The long wave in economic life. Allen and Unwin, BostonGoogle Scholar
  78. van Ewijk C (1981) The long wave–a real phenomenon? Economist 129:324–372CrossRefGoogle Scholar
  79. van Ewijk C (1982) A spectral analysis of the Kondratieff cycle. Kyklos 35:468–499CrossRefGoogle Scholar
  80. van Gelderen J (1913) Springvloed: Beschouwingen over industrieele ontwikkeling en prijsbeweging (Spring Tides of Industrial Development and Price Movements), De Nieuwe Tijd 18:253–277, 369–384, 445–464Google Scholar
  81. Zarnowitz V, Ozyildirim A (2002) Time Series decomposition and measurement of business cycles. Trends and growth cycles. NBER Working Paper no. 8736, CambridgeGoogle Scholar
  82. Zeileis A, Leisch F, Hornik H, Kleiber C (2002) strucchange: An R package for testing for structural change in linear regression models. J Stat Softw 7:1–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Economics and Social Sciences, Faculty of Economics “G. Fuá”Università Politecnica delle MarcheAnconaItaly
  2. 2.Department of EconomicsNew York UniversityNew YorkUSA
  3. 3.Department of EconomicsNew School for Social ResearchNew YorkUSA
  4. 4.CEM University of BielefeldBielefeldGermany

Personalised recommendations