Cliometrica

, 4:51 | Cite as

Filter-design and model-based analysis of trends and cycles in the presence of outliers and structural breaks

Original Paper

Abstract

A large proportion of today’s econometric literature addresses the question of whether long run GDP follows a random walk or a log linear trend with one or more structural breaks. Much less attention is paid to the modelling of the long run trend and cycle component. In most studies, the trend is simply eliminated by taking first differences of the log of the series without considering the implications of this kind of trend removal for growth and cycles. Filter design and model-based approaches are used here to assess the long run trend and the cyclical component of Chile’s per capita GDP from 1820 to 2007. Careful attention is paid to outliers and trend breaks and how they influence the appraisal of the components. We show that filter and model-based approaches give comparable results if the filter and model parameters are not chosen mechanically but tailor-made for the time series to be investigated.

Keywords

Chile Economic growth Business cycles Shocks Time series methodology 

References

  1. Acuna A, Oyarzun C (2005) Money and real fluctuations in the Chilean economy. Econ Adm 42(65):55–79Google Scholar
  2. Albala-Bertrand JM, Mamatzakis EC (2007) The impact of disaggregated infrastructure capital on the productivity growth of the Chilean economy. Manch Sch 75(2):258–273CrossRefGoogle Scholar
  3. Baxter M, King RG (1999) Measuring business cycles: approximate band-pass filters for economic time series. Rev Econ Stat 81:575–593. doi:10.1162/003465399558454 CrossRefGoogle Scholar
  4. Benati L (2001) Band-pass filtering, co integration and business-cycle analysis. Working Paper, Bank of EnglandGoogle Scholar
  5. Beveridge S, Nelson CR (1981) A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the “Business Cycle”. J Monet Econ 7:151–174. doi:10.1016/0304-3932(81)90040-4 CrossRefGoogle Scholar
  6. Box GEP, Tiao GC (1975) Intervention analysis with application to economic and environmental problems. J Am Stat Assoc 70:70–79. doi:10.2307/2285379 CrossRefGoogle Scholar
  7. Canova F (1998) Detrending and business cycle facts. J Monet Econ 41:475–512. doi:10.1016/S0304-3932(98)00006-3 CrossRefGoogle Scholar
  8. Cerda RA, Gonzalez H, Lagos LF (2006) Is fiscal policy effective? Evidence for an emerging economy: Chile 1833–2000. Appl Econ Lett 13(9):575–580. doi:10.1080/13504850500400686 CrossRefGoogle Scholar
  9. Chang I, Tiao GC (1983) Estimation of time series parameters in the presence of outliers. Technical report no 8. Graduate School of Business, University of ChicagoGoogle Scholar
  10. Chang I, Tiao GC, Chen G (1988) Estimation of time series parameters in the presence of outliers. Technometrics 30:193–204. doi:10.2307/1270165 CrossRefGoogle Scholar
  11. Charles A, Darné O (2005) Relevance of detecting outliers in garch models for modelling and forecasting financial data. Rev Assoc Fr Finance 26:33–71Google Scholar
  12. Chen S-W (2008) Are 19 developed countries’ real per capita GDP levels non-stationary? A revisit. Econ Bull 3:1–11Google Scholar
  13. Chen C, Liu L-M (1990) Joint estimation of model parameters and outlier effects in time series. Working paper series, Scientific Computing Associates. Dekalb, USAGoogle Scholar
  14. Chen C, Liu LM (1993) Joint estimation of model parameters and outlier effects in time series. J Am Stat Assoc 88:284–297. doi:10.2307/2290724 CrossRefGoogle Scholar
  15. Christiano L, Fitzgerald T (2003) The band pass filter. Int Econ Rev 44:435–465. doi:10.1111/1468-2354.t01-1-00076 CrossRefGoogle Scholar
  16. Chumacero RA, Fuentes JR (2006a) Chilean growth dynamics. Econ Model 23(2):197–214. doi:10.1016/j.econmod.2005.08.003 CrossRefGoogle Scholar
  17. Chumacero RA, Fuentes JR (2006b) Economic growth in Latin America: structural breaks or fundamentals? Estud Econ 33(2):141–154Google Scholar
  18. Cogley T (2001) Alternative definitions of the business cycle and their implications for the business cycle models: a reply to Torben Mark Pederson. J Econ Dyn Control 25:1103–1107. doi:10.1016/S0165-1889(99)00060-3 CrossRefGoogle Scholar
  19. Cogley T (2006) Data filters. Working paper, University of California, DavisGoogle Scholar
  20. Cogley T, Nason JM (1995) Effects of the Hodrick-Prescott filter on trend and difference stationary time series. Implications for business cycle research. J Econ Dyn Control 19:253–278. doi:10.1016/0165-1889(93)00781-X CrossRefGoogle Scholar
  21. Darné O, Diebolt C (2004) Unit roots and infrequent large shocks: new international evidence on output. J Monet Econ 51:1449–1465. doi:10.1016/j.jmoneco.2003.12.007 CrossRefGoogle Scholar
  22. Darné O, Diebolt C (2006) Cliometrics of academic careers and the impact of infrequent large shocks in Germany before 1945. Association Française de Cliométrie working papers, No 1Google Scholar
  23. Doorn D (2006) Consequences of Hodrick-Prescott filtering for parameter estimation in a structural model of inventory behaviour. Appl Econ 38:1863–1875. doi:10.1080/00036840500427254 CrossRefGoogle Scholar
  24. Fukuda K (2007) A unified approach to detecting unit root and structural break. Appl Econ 39:279–289. doi:10.1080/00036840500439044 CrossRefGoogle Scholar
  25. Goldrian G (2005) Weaknesses of the Baxter-King filter: is a pattern-based filter an alternative? Jahrb Natl Okon Stat 225(4):386–393Google Scholar
  26. Gómez V, Maravall A (1997) Programs TRAMO and SEATS: instructions for the user (Beta Version: June 1997). Working paper no 97001. Ministerio de Economia y Hacienda, Dirección Genreal de Análisis y Programación PresupuestariaGoogle Scholar
  27. Harvey AC (1985) Trends and cycles in macroeconomic time series. J Bus Econ Stat 3:216–227. doi:10.2307/1391592 CrossRefGoogle Scholar
  28. Harvey AC (1989) Forecasting, structural time series models and the Kalmann Filter. Cambridge University Press, CambridgeGoogle Scholar
  29. Harvey AC (1993) Time series models, 2nd edn. Harvester-Wheatsheaf, LondonGoogle Scholar
  30. Harvey AC (2002) Trends, cycles and convergence. Working papers Central Bank of Chile, No 155Google Scholar
  31. Harvey AC, Jaeger A (1993) Detrending, stylized facts and the business cycle. J Appl Econ 8:231–247. doi:10.1002/jae.3950080302 CrossRefGoogle Scholar
  32. Harvey A, Koopman SJ (2000) Signal extraction and the formulation of unobserved components models. Econom J 3:84–107. doi:10.1111/1368-423X.00040 CrossRefGoogle Scholar
  33. Harvey AC, Trimbur TM (2003) General model-based filters for extracting cycles and trends in economic time series. Rev Econ Stat 85(2):244–255. doi:10.1162/003465303765299774 CrossRefGoogle Scholar
  34. Hodrick RJ, Prescott EC (1997) Postwar US business cycles: an empirical investigation. J Money Credit Bank 29:1–16. doi:10.2307/2953682 CrossRefGoogle Scholar
  35. King A, Ramlogan C (2008) Is Latin America catching up? A time-series approach. Rev Dev Econ 12:397–415. doi:10.1111/j.1467-9361.2007.00386.x CrossRefGoogle Scholar
  36. Koopman SJ, Harvey A (2003) Computing observation weights for signal extraction and filtering. J Econ Dyn Control 27:1317–1333. doi:10.1016/S0165-1889(02)00061-1 CrossRefGoogle Scholar
  37. Koopman SJ, Harvey AC, Doornik JA, Shepard N (2006) STAMPTM8: structural time series analyser and modeller and predictor. Chapman & Hall, LondonGoogle Scholar
  38. Lüders R, Wagner G (2003) The great depression: a defining moment in Chile’s development? Cuad Econ 40:786–791Google Scholar
  39. Lyubomir I (2005) Is the ideal filter really ideal. The usage of frequency filtering and spurious cycles. S East Eur J Econ 1:79–96Google Scholar
  40. Metz R (2005) Schätzung stochastischer trends in ARIMA(p,1,q)-Prozessen. In: Greulich G, Lösch M, Müller Ch, Stier W (eds) Empirische Konjunktur- und Wachstumsforschung. Zürich/Chur, pp 153–179Google Scholar
  41. Metz R (2008) Auf der Suche nach den Langen Wellen der Konjunktur. Franz Steiner Verlag, StuttgartGoogle Scholar
  42. Mills TC (2003) Modelling trends and cycles in economic time series. Houndmills/LondonGoogle Scholar
  43. Morley JC (2002) A state-space approach to calculating the Beveridge-Nelson decomposition. Econ Lett 75:123–127. doi:10.1016/S0165-1765(01)00581-X CrossRefGoogle Scholar
  44. Morley JC (2007) The two interpretations of the Beveridge-Nelson decomposition. Working paper, Washington UniversityGoogle Scholar
  45. Murray CJ (2003) Cyclical properties of Baxter-King filtered time series. Rev Econ Stat 85:472–476. doi:10.1162/003465303765299945 CrossRefGoogle Scholar
  46. Nelson CR (2006) The Beveridge-Nelson decomposition in retrospect and prospect. Working paper, University of WashingtonGoogle Scholar
  47. Newbold P (1990) Precise and efficient computation of the Beveridge-Nelson decomposition of economic time series. J Monet Econ 26:453–457. doi:10.1016/0304-3932(90)90007-Q CrossRefGoogle Scholar
  48. Perron P (1989) The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica 57:1361–1401. doi:10.2307/1913712 CrossRefGoogle Scholar
  49. Proietti T, Harvey A (2000) A Beveridge-Nelson smoother. Econ Lett 67:139–146. doi:10.1016/S0165-1765(99)00276-1 CrossRefGoogle Scholar
  50. Ravn MO, Uhlig H (2002) Notes on adjusting the Hodrick-Prescott filter for the frequency of observations. Rev Econ Stat 84(2):371–380. doi:10.1162/003465302317411604 CrossRefGoogle Scholar
  51. Schmidt-Hebbel K (2006) Chile’s economic growth. Cuad Econ 43(127):5–48 (Pontifical Catholic University of Chile)Google Scholar
  52. Siliverstovs B, Herzer D (2007) Manufacturing exports, mining exports and growth: cointegration and causality analysis for Chile (1960–2001). Appl Econ 39(1–3):153–167CrossRefGoogle Scholar
  53. Simonovska I, Soderling L (2008) Business cycle accounting for Chile. International Monetary Fund, IMF working papers 08/61Google Scholar
  54. Van Dijk HK (2004) Twentieth century shocks, trends and cycles in industrialized nations. Economist 152:21–232. doi:10.1023/B:ECOT.0000023257.44725.6d CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.GESIS – Leibniz Institute for the Social SciencesCologneGermany

Personalised recommendations