Advertisement

Chemical Papers

, Volume 74, Issue 2, pp 601–609 | Cite as

The index of ideality of correlation: models for flammability of binary liquid mixtures

  • Alla P. ToropovaEmail author
  • Andrey A. Toropov
  • Edoardo Carnesecchi
  • Emilio Benfenati
  • Jean Lou Dorne
Original Paper

Abstract

Data on flammability of binary liquid mixtures are necessary to rational classification of different binary mixtures of liquids. List of corresponding binary mixtures, which have practical applications, is large and gradually, this list is increasing. Hence, reliable models for the endpoint can be useful. Simplified molecular input-line entry system (SMILES) is the representation of the molecular structure. The SMILES can be applied to build up quantitative structure—property/activity relationships (QSPRs/QSARs). Quasi-SMILES is the expansion of traditional SMILES by means of additional symbols that reflect “eclectic” conditions which able to influence physicochemical endpoints. The applying of the quasi-SMILES to build up model for flammability of binary liquid mixtures has indicated that the approach gives quite good model for the flash points (°C) of binary mixtures of organic substances. The index of ideality of correlation (IIC) is a new criterion of predictive potential. The attempts of applying of the IIC to improve models for flammability of binary liquid mixtures were successful.

Keywords

Flash point Binary mixture Environmental protection QSPR Index of ideality of correlation (IICCORAL software 

Notes

Acknowledgements

Authors thank the project LIFE-CONCERT contract (LIFE17 GIE/IT/000461) for financial support.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

11696_2019_903_MOESM1_ESM.xlsx (246 kb)
Supplementary material 1 (XLSX 245 kb)

References

  1. Ahmadi S, Akbari A (2018) Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method. SAR QSAR Environ Res 29(11):895–909.  https://doi.org/10.1080/1062936X.2018.1526821 CrossRefPubMedGoogle Scholar
  2. Choi J-S, Trinh TX, Yoon T-H, Kim J, Byun H-G (2019) Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials. Chemosphere 217:243–249.  https://doi.org/10.1016/j.chemosphere.2018.11.014 CrossRefPubMedGoogle Scholar
  3. Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model 49(7):1669–1678.  https://doi.org/10.1021/ci900115y CrossRefPubMedGoogle Scholar
  4. Fayet G, Rotureau P (2019) New QSPR Models to predict the flammability of binary liquid mixtures. Mol Inf 38:180012.  https://doi.org/10.1002/minf.201800122 CrossRefGoogle Scholar
  5. Fu J (2019) Flash points measurements and prediction of biofuels and biofuel blends with aromatic fluids. Fuel 241:892–900.  https://doi.org/10.1016/j.fuel.2018.12.105 CrossRefGoogle Scholar
  6. Gaudin T, Rotureau P, Fayet G (2015a) Combining mixing rules with QSPR models for pure chemicals to predict the flash points of binary organic liquid mixtures. Fire Saf J 74:61–70.  https://doi.org/10.1016/j.firesaf.2015.04.006 CrossRefGoogle Scholar
  7. Gaudin T, Rotureau P, Fayet G (2015b) Mixture descriptors toward the development of quantitative structure-property relationship models for the flash points of organic mixtures. Ind Eng Chem Res 54(25):6596–6604.  https://doi.org/10.1021/acs.iecr.5b01457 CrossRefGoogle Scholar
  8. Golubović M, Lazarević M, Zlatanović D, Krtinić D, Stoičkov V, Mladenović B, Milić DJ, Sokolović D, Veselinović AM (2018) The anesthetic action of some polyhalogenated ethers—Monte Carlo method based QSAR study. Comput Biol Chem 75:32–38.  https://doi.org/10.1016/j.compbiolchem.2018.04.009 CrossRefPubMedGoogle Scholar
  9. Hartung T, Hoffmann S (2009) Food for thought … on in silico methods in toxicology. Altex 26(3):155–166.  https://doi.org/10.14573/altex.2009.3.155 CrossRefPubMedGoogle Scholar
  10. Hristova M (2013) Measurement and prediction of binary mixture flash point. Cent Eur J Chem 11(1):57–62.  https://doi.org/10.2478/s11532-012-0131-1 CrossRefGoogle Scholar
  11. Jain S, Amin SA, Adhikari N, Jha T, Gayen S (2019) Good and bad molecular fingerprints for human rhinovirus 3C protease inhibition: identification, validation, and application in designing of new inhibitors through Monte Carlo-based QSAR study. J Biomol Struct Dyn.  https://doi.org/10.1080/07391102.2019.1566093 CrossRefPubMedGoogle Scholar
  12. Jiao L, Zhang X, Qin Y, Wang X, Li H (2015) QSPR study on the flash point of organic binary mixtures by using electro topological state index. Chemom Intell Lab Syst 156:211–216.  https://doi.org/10.1016/j.chemolab.2016.05.023 CrossRefGoogle Scholar
  13. Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41(14):2553–2564.  https://doi.org/10.1021/jm970732a CrossRefPubMedGoogle Scholar
  14. Kumar P, Kumar A, Sindhu J (2019a) Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR. SAR QSAR Environ Res 30(2):63–80.  https://doi.org/10.1080/1062936X.2018.1564067 CrossRefPubMedGoogle Scholar
  15. Kumar P, Kumar A, Sindhu J, Lal S (2019b) QSAR models for nitrogen containing monophosphonate and bisphosphonate derivatives as human farnesyl pyrophosphate synthase inhibitors based on Monte Carlo method. Drug Res 69(3):159–167.  https://doi.org/10.1055/a-0652-5290 CrossRefGoogle Scholar
  16. Muratov EN, Varlamova EV, Artemenko AG, Polishchuk PG, Kuz’min VE (2012) Existing and developing approaches for QSAR analysis of mixtures. Mol Inf 31(3–4):202–221.  https://doi.org/10.1002/minf.201100129 CrossRefGoogle Scholar
  17. Saldana DA, Starck L, Mougin P, Rousseau B, Creton B (2013) Prediction of flash points for fuel mixtures using machine learning and a novel equation. Energy Fuels 27(7):3811–3820.  https://doi.org/10.1021/ef4005362 CrossRefGoogle Scholar
  18. Stoičkov V, Stojanović D, Tasić I, Šarić S, Radenković D, Babović P, Sokolović D, Veselinović AM (2018) QSAR study of 2,4-dihydro-3H-1,2,4-triazol-3-ones derivatives as angiotensin II AT1 receptor antagonists based on the Monte Carlo method. Struct Chem 29(2):441–449.  https://doi.org/10.1007/s11224-017-1041-9 CrossRefGoogle Scholar
  19. Toropov AA, Toropova AP (2015a) Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions. Chemosphere 139:18–22.  https://doi.org/10.1016/j.chemosphere.2015.05.042 CrossRefPubMedGoogle Scholar
  20. Toropov AA, Toropova AP (2015b) Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes. Chemosphere 124(1):40–46.  https://doi.org/10.1016/j.chemosphere.2014.10.067 CrossRefPubMedGoogle Scholar
  21. Toropov AA, Toropova AP (2017) The index of ideality of correlation: a criterion of predictive potential of QSPR/QSAR models? Mutat Res Genet Toxicol Environ Mutagen 819:31–37.  https://doi.org/10.1016/J.MRGENTOX.2017.05.008 CrossRefGoogle Scholar
  22. Toropov AA, Toropova AP, Puzyn T, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2013) QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 92(1):31–37.  https://doi.org/10.1016/j.chemosphere.2013.03.012 CrossRefPubMedGoogle Scholar
  23. Toropov AA, Carbó-Dorca R, Toropova AP (2018) Index of ideality of correlation: new possibilities to validate QSAR: a case study. Struct Chem 29(1):33–38.  https://doi.org/10.1007/s11224-017-0997-9 CrossRefGoogle Scholar
  24. Toropov AA, Raška I, Toropova AP, Raškova M, Veselinović AM, Veselinović JB (2019) The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models. Sci Total Environ 659:1387–1394.  https://doi.org/10.1016/j.scitotenv.2018.12.439 CrossRefPubMedGoogle Scholar
  25. Toropova AP, Toropov AA (2015) Mutagenicity: QSAR -quasi-QSAR-nano-QSAR. Mini Rev Med Chem 15:608–621.  https://doi.org/10.2174/1389557515666150219121652 CrossRefPubMedGoogle Scholar
  26. Toropova AP, Toropov AA (2017) The index of ideality of correlation: a criterion of predictability of QSAR models for skin permeability? Sci Total Environ 586:466–472.  https://doi.org/10.1016/J.SCITOTENV.2017.01.198 CrossRefPubMedGoogle Scholar
  27. Toropova AP, Toropov AA (2018) Use of the index of ideality of correlation to improve models of eco-toxicity. Environ Sci Pollut Res 25(31):31771–31775CrossRefGoogle Scholar
  28. Toropova AP, Toropov AA (2019) QSPR and nano-QSPR: what is the difference? J Mol Struct 1182:141–149.  https://doi.org/10.1016/j.molstruc.2019.01.040 CrossRefGoogle Scholar
  29. Toropova AP, Toropov AA, Diaza RG, Benfenati E, Gini G (2011a) Analysis of the co-evolutions of correlations as a tool for QSAR-modeling of carcinogenicity: an unexpected good prediction based on a model that seems untrustworthy. Cent Eur J Chem 9(1):165–174.  https://doi.org/10.2478/s11532-010-0135-7 CrossRefGoogle Scholar
  30. Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011b) CORAL: QSPR models for solubility of [C60] and [C70] fullerene derivatives. Mol Divers 15(1):249–256.  https://doi.org/10.1007/s11030-010-9245-6 CrossRefPubMedGoogle Scholar
  31. Toropova AP, Toropov AA, Benfenati E, Gini G (2011c) Co-evolutions of correlations for QSAR of toxicity of organometallic and inorganic substances: an unexpected good prediction based on a model that seems untrustworthy. Chemom Intell Lab Syst 105(2):215–219.  https://doi.org/10.1016/j.chemolab.2010.12.007 CrossRefGoogle Scholar
  32. Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012a) CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna. Chemom Intell Lab Syst 110(1):177–181.  https://doi.org/10.1016/j.chemolab.2011.10.005 CrossRefGoogle Scholar
  33. Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012b) CORAL: models of toxicity of binary mixtures. Chemom Intell Lab Syst 119:39–43.  https://doi.org/10.1016/j.chemolab.2012.10.001 CrossRefGoogle Scholar
  34. Toropova AP, Toropov AA, Rallo R, Leszczynska D, Leszczynski J (2015a) Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicol Environ Saf 112:39–45.  https://doi.org/10.1016/j.ecoenv.2014.10.003 CrossRefPubMedGoogle Scholar
  35. Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J (2015b) QSAR model as a random event: a case of rat toxicity. Bioorg Med Chem 23(6):1223–1230.  https://doi.org/10.1016/j.bmc.2015.01.055 CrossRefPubMedGoogle Scholar
  36. Toropova AP, Toropov AA, Marzo M, Escher SE, Dorne JL, Georgiadis N, Benfenati E (2018a) The application of new HARD-descriptor available from the CORAL software to building up NOAEL models. Food Chem Toxicol 112:544–550.  https://doi.org/10.1016/j.fct.2017.03.060 CrossRefPubMedGoogle Scholar
  37. Toropova AP, Toropov AA, Benfenati E, Castiglioni S, Bagnati R, Passoni A, Zuccato E, Fanelli R (2018b) Quasi-SMILES as a tool to predict removal rates of pharmaceuticals and dyes in sewage. Process Saf Environ Prot 118:227–233.  https://doi.org/10.1016/j.psep.2018.07.003 CrossRefGoogle Scholar
  38. Trinh TX, Choi J-S, Jeon H, Byun H-G, Yoon T-H, Kim J (2018) Quasi-SMILES-based nano-quantitative structure-activity relationship model to predict the cytotoxicity of multiwalled carbon nanotubes to human lung cells. Chem Res Toxicol 31(3):183–190.  https://doi.org/10.1021/acs.chemrestox.7b00303 CrossRefPubMedGoogle Scholar
  39. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36.  https://doi.org/10.1021/ci00057a005 CrossRefGoogle Scholar
  40. Worachartcheewan A, Mandi P, Prachayasittikul V, Toropova AP, Toropov AA, Nantasenamat C (2014) Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors. Chemom Intell Lab Syst 138:120–126.  https://doi.org/10.1016/j.chemolab.2014.07.017 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health ScienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
  2. 2.Scientific Committee and Emerging Risks UnitEuropean Food Safety AuthorityParmaItaly

Personalised recommendations