Advertisement

Chemical Papers

, Volume 74, Issue 2, pp 581–589 | Cite as

Optical properties of NiOOH films in formaldehyde solutions

  • Sergey S. FomanyukEmail author
  • Vitalii O. Smilyk
  • Gennadii Ya Kolbasov
  • Ihor A. Rusetskyi
Original Paper
  • 27 Downloads

Abstract

Films of nickel hydroxide have been obtained by electrodeposition. The analysis of interferograms, optical spectra, XRD analysis and the SEM of the obtained films showed that the deposition of films with ~ 10−5 mol/L PcNi(SO3Na)4 in the Ni(NO3)2 solution helps to control the formation of uniform Ni(OH)2 films with dominance structure of α-Ni(OH)2. The studies of the kinetics of optical changes of NiOOH films in aqueous formaldehyde solutions showed that due to the reaction of NiOOH with formaldehyde, its color changes. It was established that the dependence of the rate of change of light transmittance, ΔT/Δt, on the concentration of formaldehyde is linear in the range of 0.5–20 mmol/L. An analysis of cyclic plots of electrochemical oxidation of Ni(OH)2 to NiOOH and its reduction by the action of formaldehyde showed that the formaldehyde concentration of more than 22 mmol/L can be determined from the absolute value of light transmittance. It was established that an dominance of structure of α-Ni(OH)2 and decrease the thickness of the films to ~ 150 nm contributes by oxidation processes solutions of millimolar concentrations formaldehyde.

Keywords

NiOOH films Chemichromic effect Formaldehyde Kinetics decoloration Light transmittance Electrochromic properties 

List of symbols

Dopt

Optical density (arbitrary unit)

N

Additive concentration at Ni(OH)2 deposit surface (mol/cm2)

t

Time h (min)

ΔT/Δt

Rate of change in light transmittance (s−1)

Notes

Acknowledgements

The authors are grateful to Dr. V. Ya Chernii for providing a sodium salt of nickel phthalocyanine PcNi(SO3Na)4 which was used in electrodeposition of Ni(OH)2.

References

  1. Aghazadeh M, Ghaemi M, Sabour B, Dalvand S (2014) Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J Solid State Electrochem 1:1569–1584.  https://doi.org/10.1007/s10008-014-2381-7 CrossRefGoogle Scholar
  2. Aguilera L, Leyet Y, Padrón-Hernández E, Passos RR, Pocrifka LA (2018) Understanding electrochemical performance of Ni(OH)2 films: a study contributions to energy storage. J Solid State Electrochem 22:1621–1628.  https://doi.org/10.1007/s10008-017-3737-6 CrossRefGoogle Scholar
  3. Castro-Hurtado I, Herrán J, Mandayo GG, Castaño E (2011) Studies of influence of structural properties and thickness of NiO thin films on formaldehyde detection. Thin Solid Films 520:947–952.  https://doi.org/10.1016/j.tsf.2011.04.180 CrossRefGoogle Scholar
  4. Cindemir U, Topalian Z, Österlund L, Granqvist CG, Niklasson GA (2014) Porous nickel oxide film sensor for formaldehyde. J Phys: Conf Ser 559:012012–012016.  https://doi.org/10.1088/1742-6596/559/1/012012 CrossRefGoogle Scholar
  5. Comini E (2016) Metal oxide nanowire chemical sensors: innovation and quality of life. Mater Today 19(10):559–567.  https://doi.org/10.1016/j.mattod.2016.05.016 CrossRefGoogle Scholar
  6. Decker F, Passerini S, Pilleggi R, Scorrosati B (1992) The electrochromic process in non-stechiometric nickel oxide thin film electrodes. Electrochim Acta 37:1033–1038.  https://doi.org/10.1016/0013-4686(92)85220-F CrossRefGoogle Scholar
  7. Fomanyuk SS, Krasnov YuS, Kolbasov G Ya (2013) Kinetics of electrochromic process in thin films of cathodically deposited nickel hydroxide. J Solid State Electrochem 17:2643–2649.  https://doi.org/10.1007/s10008-013-2169-1 CrossRefGoogle Scholar
  8. Fu G, Hu Z, Xie L, Jin X, Xie Y, Wang Y, Zhang Z, Yang Y, Wu H (2009) Electrodeposition of Nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int J Electrochem Sci 4:1052–1062 http://www.electrochemsci.org/papers/vol4/4081052.pdf Google Scholar
  9. Grégoire B, Ruby C, Carteret C (2013) Hydrolysis of mixed Ni2+–Fe3+ and Mg2+–Fe3+ solutions and mechanism of formation of layered double hydroxides. R Soc Chem 42:15687–15698.  https://doi.org/10.1039/C3DT51521D CrossRefGoogle Scholar
  10. He K-X, Wu Q-F, Zhang X-G, Wang X-L (2006) Electrodeposition of Nickel and Cobalt Mixed Oxide/Carbon nanotube thin films and their charge storage properties. J Electrochem Soc 153:A1568–A1574.  https://doi.org/10.1149/1.2208735 CrossRefGoogle Scholar
  11. Hou X, Williams J, Choy K-L (2006) Processing and structural characterization of porous reforming catalytic films. Thin Solid Films 495:262–265.  https://doi.org/10.1016/j.tsf.2005.08.189 CrossRefGoogle Scholar
  12. Jaman N, Hoque MdS, Chakraborty SC, Hoq MdE, Seal HP (2015) Determination of formaldehyde content by spectrophotometric method in some fresh water and marine fishes of Bangladesh. Int J Fish Aquat Stud 2:94–98.  https://doi.org/10.22271/fish CrossRefGoogle Scholar
  13. Kong F, Kostecki R, McLarnon F (1998) In situ ellipsometric study of the electroprecipitation of nickel hydroxide films. J Electrochem Soc 145:1174–1178.  https://doi.org/10.1149/1.1838434 CrossRefGoogle Scholar
  14. Kovalenko V, Kotok V (2018) Synthesis of Ni(OH)2 by template homogeneous precipitation for application in the binderfree electrode of supercapacitor. East-Eur J Enterp Technol 4:29–35.  https://doi.org/10.15587/1729-4061.2018.140899 CrossRefGoogle Scholar
  15. Krasnov YuS, Kolbasov G Ya (2004) Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3. Electrochim Acta 49:2425–2433.  https://doi.org/10.1016/j.electacta.2004.01.020 CrossRefGoogle Scholar
  16. Lerner LS (1997) Physics for scientists and engineers, vol 2. Jones & Bartlett Publishers Inc., LondonGoogle Scholar
  17. Lu Z, Chang Z, Zhu W, Sun X (2011) Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem Commun 47:9651–9653.  https://doi.org/10.1039/C1CC13796D CrossRefGoogle Scholar
  18. Lyalin BV, Petrosyan VA (2010) Oxidation of organic compounds on NiOOH electrode. Russ J Electrochem 46:1199–1214.  https://doi.org/10.1134/S1023193510110017 CrossRefGoogle Scholar
  19. Monk PMS, Ayub S (1997) Solid-state properties of thin film electrochromic cobalt–nickel oxide. J Solid State Ion 99:115–124.  https://doi.org/10.1016/S0167-2738(97)00148-3 CrossRefGoogle Scholar
  20. Nengsih S, Umar AA, Salleh MM, Oyama M (2012) Detection of formaldehyde in water: a shape effect on the plasmonic sensing properties of the gold nanoparticles. Sensors 12:10309–10325.  https://doi.org/10.3390/s120810309 CrossRefPubMedGoogle Scholar
  21. Nunes CV, Danczuk M, Bortoti AA, Guimaraes RR, Goncalves JM, Araki K, Banczek EP, Anais FJ (2016) Enhanced stability and conductivity of α-Ni(OH)2/smectite clay composites. J Electrochem Soc 163:A2356–A2361.  https://doi.org/10.1149/2.1121610jes CrossRefGoogle Scholar
  22. Parveen N, Cho MH (2016) Self-assembled 3D flower–like nickel hydroxide nanostructures and their supercapacitor applications. Sci Rep.  https://doi.org/10.1038/srep27318(Article number: 27318) CrossRefPubMedPubMedCentralGoogle Scholar
  23. Perednis D, Gauckler L (2004) Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. J of Solid State Ion 166:229–239.  https://doi.org/10.1016/j.ssi.2003.11.011 CrossRefGoogle Scholar
  24. Purushothaman KK, Muralidharan G (2008) Nanostructured NiO based all solid state electrochromic device. J Sol–Gel Sci Technol 46:190–194.  https://doi.org/10.1007/s10971-007-1657-0 CrossRefGoogle Scholar
  25. Rehbein H, Schmid T (1996) A rapid and simple method for the determination of Formaldehyde in Fishery Products. Informationen für die Fischwirtschaft aus der Fischereiforschung 43:37–39 http://aquaticcommons.org/4184/1/Infn_43_1_S_37-39.PDF Google Scholar
  26. Tomkins BA, McMahon JM, Caldwell WM (1989) Liquid chromatographic determination of 386 total formaldehyde in drinking water. J - Assoc Off Anal Chem 72:835–839 (PMID: 2808246) PubMedGoogle Scholar
  27. Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti RE, Dalchiele EA (2005) Preparation and characterization of eosin band erythrosine j-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films 490:182–188.  https://doi.org/10.1016/j.tsf.2005.04.052 CrossRefGoogle Scholar
  28. Wu M-S, Huang Y-A, Yang C-H (2008) Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition. J Electrochem Soc 155:A798–A805.  https://doi.org/10.1149/1.2969948 CrossRefGoogle Scholar
  29. Wu H-Y, Xie Y-L, Hu Z-A (2013) Synthesis, characterization and electrochemical properties of board-like al-substituted alpha nickel hydroxides. Int J Electrochem Sci 8:1839–1848 http://www.electrochemsci.org/papers/vol8/80201839.pdf Google Scholar
  30. Yang H, Gao G, Teng F, Liu W, Chen S, Gea Z (2014) Nickel hydroxide nanoflowers for a nonenzymatic electrochemical glucose sensor. J Electrochem Soc 161:B216–B219.  https://doi.org/10.1149/2.0521410jes CrossRefGoogle Scholar
  31. Yasri NG, Maha HS, Mosallb A (2015) Spectrophotometric determination of formaldehyde based on the telomerization reaction of tryptamine. Arab J Chem 8:487–495.  https://doi.org/10.1016/j.arabjc.2011.02.005 CrossRefGoogle Scholar
  32. Zhang J, Shangguan L, Shaomin S, Chuan D (2013) Electrocatalytic oxidation of formaldehyde and methanol on Ni(OH)2/Ni electrode. Russ J Electrochem 49:888–894.  https://doi.org/10.1134/S1023193512120166 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Sergey S. Fomanyuk
    • 1
    Email author
  • Vitalii O. Smilyk
    • 1
  • Gennadii Ya Kolbasov
    • 1
  • Ihor A. Rusetskyi
    • 1
  1. 1.V.I. Vernadskii Institute of General and Inorganic ChemistryUkrainian NASKievUkraine

Personalised recommendations