Enhanced supercapacitive performance of MnOx through N2/H2 plasma treatment

  • Shenggao Wang
  • Mingchen Zhou
  • Xujie Wang
  • Yangwu Mao
  • Quanrong Deng
  • Geming WangEmail author
Original Paper


This work relates to the research on the effect of plasma on the performance of manganese oxide. Manganese oxide nanoflakes were prepared through the reaction of KMnO4 and alcohol, and then treated by N2 and N2/H2 plasma. The crystal structure of manganese oxide can be destructed by plasma treatment and manganese oxide become more amorphous and aggregated than those of as-synthesized MnOx, both of which have been proven by XRD and TEM techniques. Results of XPS confirm that the ionic defects and oxygen vacancy are also formed in manganese oxide by plasma. The electrochemical behavior was studied using CV, GCD, and EIS method in 0.5 M Na2SO4 solution. The results show that N2/H2 plasma treatment can fascinate the coexistence of mixed valence of Mn and the formation of oxygen vacancies, reduce the charge-transfer resistance, and then enhance the capacitive performance efficiently.


MnOx Plasma Supercapacitors 



Financial support from National Natural Science Foundation of China (Grants No.: 51272187, 11704288), the Science and Technology Supporting Program of Hubei Province (Grants No.: 2015BAA093, 2013CFA012), and the Scientific Project provided by Wuhan Government (Grants No.: 2016010101010026) was greatly acknowledged.


  1. Dorraki N, Safa NN, Jahanfar M, Ghomi H, Siadat SOR (2015) Surface modification of chitosan/PEO nanofibers by air dielectric barrier discharge plasma for acetylcholinesterase immobilization. Appl Surf Sci 349:940–947. CrossRefGoogle Scholar
  2. Gu T, Wei B (2015) Fast and stable redox reactions of MnO2/CNTs hybrid electrodes for dynamically stretchable pseudocapacitors. Nanoscale 7:11626–11632. CrossRefGoogle Scholar
  3. Ho MY, Khiew PS, Isa D, Tan TK (2014) A review of metal oxide composite electrode materials for electrochemical capacitors. NANO 9:1430002. CrossRefGoogle Scholar
  4. Huang HJ, Zhang WY, Fu YS, Wang X (2015) Controlled growth of nanostructured MnO2 on carbon nanotubes for high performance electrochemical capacitors. Electrochim Acta 152:480–488. CrossRefGoogle Scholar
  5. Jiang Y, Ling XT, Jiao Z, Li L, Ma QL, Wu MH, Chu YL, Zhao B (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253. CrossRefGoogle Scholar
  6. Kang JL, Hirata A, Kang LJ, Zhang XM, Hou Y, Chen LY, Li C, Tujita T, Akagi K, Chen MW (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Commun 52:1664–1667. CrossRefGoogle Scholar
  7. Kang LT, Deng JC, Liu TJ, Cui MW, Zhang XY, Li PY, Liu XG, Liang W (2015) One-step solution combustion synthesis of cobalt-nickel oxides/C/Ni/CNTs nanocomposites as electrochemical capacitors electrode materials. J Power Sources 275:126–135. CrossRefGoogle Scholar
  8. Kundu M, Liu LF (2013) Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J Power Sources 243:676–681. CrossRefGoogle Scholar
  9. Lee SW, Kim JH, Chen S, Hammond PT, Horn YS (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896. CrossRefGoogle Scholar
  10. Lee H, Park SH, Kim SJ, Park YK, Kim BJ, An KH, Ki SJ, Jung SC (2015) Synthesis of manganese oxide/activated carbon composites for supercapacitor application using a liquid phase plasma reduction system. Int J Hydrogen Energy 40:754–759. CrossRefGoogle Scholar
  11. Li Q, Yin LW, Li ZQ, Wang XK, Qi YX, Ma JY (2013) Copper doped hollow structured manganese oxide mesocrystals with controlled phase structure and morphology as anode materials for lithium ion battery with improved electrochemical performance. Appl Mater Inter 5:10975–10984. CrossRefGoogle Scholar
  12. Li CY, Wang SY, Zhang GW, Du ZL, Wang GL, Yang J, Qin XJ, Shao GJ (2015) Three-dimensional crisscross porous manganese oxide/carbon composite networks for high performance supercapacitor electrodes. Electrochim Acta 161:32–39. CrossRefGoogle Scholar
  13. Liu B, Yue L (2014) Synthesis and electrochemical properties of Co doped MnO2 framework with nanofibrous structure. Int J Appl Ceram Technol 7:1–6. CrossRefGoogle Scholar
  14. Ma YY, Wang RF, Wang H, Key JL, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for enhancement of the oxygen reduction reaction activity. J Power Sources 280:526–532. CrossRefGoogle Scholar
  15. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639. CrossRefGoogle Scholar
  16. Pang MJ, Long GH, Jiang S, Ji Y, Ham W, Wang B, Liu XL, Xi YL (2015) One pot low-temperature growth of hierarchical σ-MnO2 nanosheets on nickel foam for supercapacitor application. Electrochim Acta 161:297–304. CrossRefGoogle Scholar
  17. Peng L, Peng X, Liu B, Wu CZ, Xie Y, Yu GH (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13:2151–2157. CrossRefGoogle Scholar
  18. Pi XQ, Wang SG, Deng QR, Wang GM, Wang CX, Cui LJ, Chen R, Liu XX (2016) The role of carbon nanotubes on the capacitance of MnO2/CNTs. Russ J Appl Chem 89:1189–1195. CrossRefGoogle Scholar
  19. Sahin O, Kaya M, Saka C (2015) Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci 116:46–53. CrossRefGoogle Scholar
  20. Shimamoto K, Tadanaga K, Tatsumisago M (2013) All-solid-state electrochemical capacitors using MnO2/carbon nanotube composite electrode. Electrochim Acta 109:651–655. CrossRefGoogle Scholar
  21. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Mater Sci 343:1210–1211. Google Scholar
  22. Song MK, Cheng S, Chen HY, Qin WT, Nam KW, Xu SC, Yang XQ, Bongiorno A, Lee J, Bai JM, Tyson TA, Cho J, Liu ML (2012) Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano Lett 12:3483–3490. CrossRefGoogle Scholar
  23. Teng F, Santhanagopalan S, Wang Y, Meng DD (2010) In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties. J Alloy Comp 499:259–264. CrossRefGoogle Scholar
  24. Toupin M, Brousse T, Belanger D (2002) Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952. CrossRefGoogle Scholar
  25. Wang F, Dai HX, Deng JG, Bai GM, Ji KM, Liu YX (2012) Manganese oxides with rod-, wire-, tube-, and flower-Like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041. CrossRefGoogle Scholar
  26. Wu ZS, Zhou G, Yin LC, Ren WC, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131. CrossRefGoogle Scholar
  27. Xiao F, Xu Y (2013) Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J Mater Sci: Mater Electron 24:1913–1920. Google Scholar
  28. Zhai T, Xie SL, Yu MG, Fang PP, Liang CL, Lu XH, Tong YX (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263. CrossRefGoogle Scholar
  29. Zhang LL, Gu Y, Zhao XS (2013a) Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A 1:9395–9408. CrossRefGoogle Scholar
  30. Zhang W, Mu B, Wang A (2013b) Preparation of manganese dioxide/multiwalled carbon nanotubes hybrid hollow microspheres via layer-by-layer assembly for supercapacitor. J Mater Sci 48:7581–7586. CrossRefGoogle Scholar
  31. Zhang YF, Zhang CX, Huang GX, Xing BL, Duan YL (2015) Synthesis and capacitive properties of manganese oxide nanoparticles dispersed on hierarchical porous carbons. Electrochim Acta 166:107–116. CrossRefGoogle Scholar
  32. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of grapheme. Science 332:1537–1541. CrossRefGoogle Scholar
  33. Zhu GX, Zhu JG, Jiang WJ, Zhang ZJ, Wang J, Zhu YF, Zhang QF (2017) Surface oxygen vacancy induced-MnO2 nanofiber for highly efficient ozone elimination. Appl Catal B-Environ 209:729–737. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Shenggao Wang
    • 1
  • Mingchen Zhou
    • 1
  • Xujie Wang
    • 1
  • Yangwu Mao
    • 1
  • Quanrong Deng
    • 1
  • Geming Wang
    • 1
    Email author
  1. 1.Provincial Key Laboratory of Plasma Chemistry and Advanced MaterialsWuhan Institute of TechnologyWuhanChina

Personalised recommendations