Advertisement

Validated micellar electrokinetic capillary chromatography (MECC) method for determination of 5-hydroxymethylfurfural in honey and comparison with HPLC

  • Tufan Güray
  • Neşe Yılmaz Tuncel
  • Muzaffer Tunçel
  • Ulku Dilek UysalEmail author
Original Paper

Abstract

A simple and validated micellar electrokinetic chromatographic method is described for the determination of 5-hydroxymethylfurfural (HMF). The method was applied to fresh and processed (heated at 65 °C, 85 °C and 105 °C for 5 h and 20 h) multifloral and honeydew honeys. Optimum conditions were: 10 mmol L−1 Tris buffer consisting 110 mmol L−1 SDS and 10% (v/v) MeOH at pH 9.10, 20 kV of applied potential, 3 s of injection time at 5 × 103 N m−2, 280 nm of wavelength and 25 °C of fixed temperature. Mean electrophoretic mobility (m2 s−1 V−1) of HMF and methyl paraben (IS) were − 5.28 × 10−5 (RSD of 0.745%) and − 2.52 × 10−4 (RSD of 0.944%), respectively. The calibration curve was linear in the range of 0.68 µg mL−1 (5.40 × 10−6 mol L−1) and 4.05 µg mL−1 (3.21 × 10−5 mol L−1) with R = 0.9990 for inter-day precision. LOD and LOQ values were 0.007 µg mL−1 (5.48 × 10−8 mol L−1) and 0.023 µg mL−1 (1.83 × 10−7 mol L−1), respectively, as inter-day precision. The accuracy was very high with recovery values between 94.07 and 97.16%. The developed method was fully validated according to ICH guidelines. The results were compared with those of HPLC method adapted from AOAC method no: 980.23.

Keywords

5-Hydroxymethylfurfural Honey HMF Capillary electrophoresis HPLC 

Notes

References

  1. Abdulmalik O, Safo MK, Chen QK, Yang JS, Brugnara C, Ohene-Frempong K, Abraham DJ, Asakura T (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol 128:552–561.  https://doi.org/10.1111/j.1365-2141.2004.05332.x CrossRefGoogle Scholar
  2. Andrade P, Ferreres F, Gil MI, TomasBarberan FA (1997) Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chem 60:79–84.  https://doi.org/10.1016/S0308-8146(96)00313-5 CrossRefGoogle Scholar
  3. Association of Official Analytical Chmists International (AOAC) (1983) HMF in honey, Spectrophotometric method, AOAC official method 980.23Google Scholar
  4. Baldwin IT, Staszak-Kozinski L, Davidson R (1994) Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. J Chem Ecol 20:2345–2371.  https://doi.org/10.1007/bf02033207 CrossRefGoogle Scholar
  5. Batu A, Aydoğmuş FE, Batu HS (2014) Formation of hydroxymethylfurfural in foods and its effects on human healt. Electronic J Food Technol 9:40–55Google Scholar
  6. Beil S, Wagner S (2006) Agent and method for identifying furfurals. Patent No: WO2006042600A1 https://patents.google.com/patent/WO2006042600A1/en
  7. Berg HE, Vanboekel MAJS (1994) Degradation of lactose during heating of milk. 1 Reaction Pathways. Neth Milk Dairy J 48:157–175Google Scholar
  8. Bruce WR, Archer MC, Corpet DE, Medline A, Minkin S, Stamp D, Yin Y, Zhang XM (1993) Diet, aberrant crypt foci and colorectal-cancer. Mutat Res 290:111–118.  https://doi.org/10.1016/0027-5107(93)90038-H CrossRefGoogle Scholar
  9. Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurence in food and mitigation strategies. Lwt-Food Sci Technol 44:793–810.  https://doi.org/10.1016/j.lwt.2010.11.002 CrossRefGoogle Scholar
  10. Chen ZJ, Yan XM (2009) Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. J Agr Food Chem 57:8742–8747.  https://doi.org/10.1021/jf9021916 CrossRefGoogle Scholar
  11. Codex Alimentarius (2001) Codex standard for honey, pp. 1-8 http://www.fao.org/input/download/standards/310/cxs_012e.pdf. Accessed 22
  12. da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323.  https://doi.org/10.1016/j.foodchem.2015.09.051 CrossRefGoogle Scholar
  13. Delgado-Andrade C, Rufian-Henares JA, Morales FJ (2009) Hydroxymethylfurfural in commercial biscuits marketed in Spain. J Food Nutr Res 48:14–19Google Scholar
  14. El-Hajj T (1983) Dissertation, Universite´ Lyon Universite´ LyonGoogle Scholar
  15. European Community Concil Directive 2001/110/EC of 20 December 2001 (2009) Relating to honey. Off J Eur Commun L10:47–52Google Scholar
  16. Frank HK (1974) Toxische Stoffwechselprodukte von Schimmelpilzen. Aliment Pharm Therap 3:98–101Google Scholar
  17. Glatt H, Schneider H, Liu YG (2005) V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mutat Res-Gen Tox En 580:41–52.  https://doi.org/10.1016/j.mrgentox.2004.11.005 CrossRefGoogle Scholar
  18. Gokmen V, Acar J (1999) Simultaneous determination of 5-hydroxymethylfurfural and patulin in apple juice by reversed-phase liquid chromatography. J Chromatogr A 847:69–74.  https://doi.org/10.1016/S0021-9673(99)00133-8 CrossRefGoogle Scholar
  19. International Conference on Harmonisation (ICH) (1999) In: Guidance for Industry: Q2 (R1),validation of analytical procedures, methodology. harmonised methods of the international honey commission responsible for the methods: Stefan Bogdanov, pp 1–54Google Scholar
  20. International Conference on Harmonisation (ICH) (2005) In: Guidance for Industry: Q2 (R1),validation of analytical procedures, methodology. Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, pp 1–13Google Scholar
  21. Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) 5-hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38:801–809.  https://doi.org/10.1016/S0278-6915(00)00070-3 CrossRefGoogle Scholar
  22. Jeuring HJ, Kuppers FJEM (1980) High-performance liquid-chromatography of furfural and hydroxymethylfurfural in spirits and honey. J Assoc Off Ana Chem 63:1215–1218Google Scholar
  23. Kawana O, Nakamura Y, Yoshihiro Y (1983) Electrooxdation of 5-hydroxymethylfurfural and its derivatives. Nippon Kagaku Kaishi 1983:1747–1752CrossRefGoogle Scholar
  24. Kitts DD, Chen XM, Jing H (2012) Demonstration of antioxidant and anti-inflammatory bioactivities from sugar–amino acid Maillard reaction products. J Agr Food Chem 60:6718–6727.  https://doi.org/10.1021/jf2044636 CrossRefGoogle Scholar
  25. Lee YC, Shlyankevich M, Jeong HK, Douglas JS, Surh YJ (1995) Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric-acid ester. Biochem Bioph Res Co 209:996–1002.  https://doi.org/10.1006/bbrc.1995.1596 CrossRefGoogle Scholar
  26. Lee TP, Sakai R, Manaf NA, Rodhi AM, Saad B (2014) High performance liquid chromatography method for the determination of patulin and 5-hydroxymethylfurfural in fruit juices marketed in Malaysia. Food Control 38:142–149.  https://doi.org/10.1016/j.foodcont.2013.10.018 CrossRefGoogle Scholar
  27. Li SFY (1992) Capillary electrophoresis: principles, practice and applications. Elsevier, AmsterdamGoogle Scholar
  28. Li MM, Wu LY, Zhao T, Xiong L, Huang X, Liu ZH, Fan XL, Xiao CR, Gao Y, Ma YB, Chen JJ, Zhu LL, Fan M (2011) The protective role of 5-HMF against hypoxic injury. Cell Stress Chaperon 16:267–273.  https://doi.org/10.1007/s12192-010-0238-2 CrossRefGoogle Scholar
  29. Morales FJ, Jimenez-Perez S (2001) Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food Chem 72:525–531.  https://doi.org/10.1016/S0308-8146(00)00284-3 CrossRefGoogle Scholar
  30. Morales V, Sanz ML, Martin-Alvarez PJ, Corzo N (2009) Combined use of HMF and furosine to assess fresh honey quality. J Sci Food Agric 89:1332–1338.  https://doi.org/10.1002/jsfa.3590 CrossRefGoogle Scholar
  31. Nassberger L (1990) Influence of 5-Hydroxymethylfurfural (5-Hmf) on the overall metabolism of human blood-cells. Hum Exp Toxicol 9:211–214.  https://doi.org/10.1177/096032719000900402 CrossRefGoogle Scholar
  32. Omura H, Jahan N, Shinohara K, Murakami H (1983) Formation of mutagens by the maillard-reaction. Acs Sym Ser 215:537–563.  https://doi.org/10.1021/bk-1983-0215.ch029 CrossRefGoogle Scholar
  33. Polovkova M, Simko P (2017) Determination and occurrence of 5-hydroxymethyl-2-furaldehyde in white and brown sugar by high performance liquid chromatography. Food Control 78:183–186.  https://doi.org/10.1016/j.foodcont.2017.02.059 CrossRefGoogle Scholar
  34. Reyes-Salas EO, Manzanilla-Cano JA, Barcelo-Quintal MH, Juarez-Mendoza D, Reyes-Salas M (2006) Direct electrochemical determination of hydroxymethylfurfural (HMF) and its application to honey samples. Anal Lett 39:161–171.  https://doi.org/10.1080/00032710500423476 CrossRefGoogle Scholar
  35. Rizelio VM, Gonzaga LV, Borges GDC, Micke GA, Fett R, Costa ACO (2012) Development of a fast MECK method for determination of 5-HMF in honey samples. Food Chem 133:1640–1645.  https://doi.org/10.1016/j.foodchem.2011.11.058 CrossRefGoogle Scholar
  36. Sano A, Satoh T, Oguma T, Nakatoh A, Satoh J, Ohgawara T (2007) Determination of levulinic acid in soy sauce by liquid chromatography with mass spectrometric detection. Food Chem 105:1242–1247.  https://doi.org/10.1016/j.foodchem.2007.03.004 CrossRefGoogle Scholar
  37. Surh YJ, Liem A, Miller JA, Tannenbaum SR (1994) 5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the maillard reaction-product, 5-hydroxymethylfurfural. Carcinogenesis 15:2375–2377.  https://doi.org/10.1093/carcin/15.10.2375 CrossRefGoogle Scholar
  38. Svendsen C, Husøy T, Glatt H, Haugen M, Alexander J (2007) 5-Sulfooxymethylfurfural (SMF), the metabolite of 5-hydroxymethylfurfural (HMF), increases the numbers of adenoma and aberrant crypt foci in the intestine of min-mice. Toxicol Lett 172:202.  https://doi.org/10.1016/j.toxlet.2007.05.509 CrossRefGoogle Scholar
  39. Svendsen C, Husoy T, Glatt H, Paulsen JE, Alexander J (2009) 5-hydroxymethylfurfural and 5-sulfooxymethylfurfural increase adenoma and flat ACF number in the intestine of min/plus mice. Anticancer Res 29:1921–1926Google Scholar
  40. Teixido E, Nunez O, Santos FJ, Galceran MT (2011) 5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography. Food Chem 126:1902–1908.  https://doi.org/10.1016/j.foodchem.2010.12.016 CrossRefGoogle Scholar
  41. Telatar YK (1985) Elma Suyu ve Konsantrelerinde Hidroksimetilfurfural (HMF), I. Farklı Elma Çeşitlerinin Elma Suyu ve Konsantresine İşlenmesi Süresinde HMF Oluşumu. J Food 10:195–201Google Scholar
  42. Terrab A, Diez MJ, Heredia FJ (2002) Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chem 79:373–379.  https://doi.org/10.1016/s0308-8146(02)00189-9 CrossRefGoogle Scholar
  43. TS 3633 (1997) Standard of apple juice. Turkish Standards Institution, AnkaraGoogle Scholar
  44. Ulbricht RJ, Northup SJ, Thomas JA (1984) A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fund Appl Toxicol 4:843–853.  https://doi.org/10.1016/0272-0590(84)90106-4 CrossRefGoogle Scholar
  45. Vorlova L, Borkovcova I, Kalabova K, Vecerek V (2006) Hydroxymethylfurfural contents in foodstuffs determined by HPLC method. J Food Nutr Res 45:34–38Google Scholar
  46. Wang Y, Juliani HR, Simon JE, Ho CT (2009) Amino acid-dependent formation pathways of 2-acetylfuran and 2,5-dimethyl-4-hydroxy-3[2H]-furanone in the Maillard reaction. Food Chem 115:233–237.  https://doi.org/10.1016/j.foodchem.2008.12.014 CrossRefGoogle Scholar
  47. White JW (1979) Spectrophotometric method for hydroxymethylfurfural in honey. J Assoc Off Anal Chem 62:509–514Google Scholar
  48. Winkler O (1955) Beitrag zum Nachwals und zur Bestimmung von Oxymethylfurfural in Honig und Kunsthonig. Zeitschrift fur Lebensmittel Untersuchung und Forshung 102:161–167.  https://doi.org/10.1007/BF01683776 CrossRefGoogle Scholar
  49. Wong YF, Makahleh A, Al Azzam KM, Yahaya N, Saad B, Sulaiman SA (2012) Micellar electrokinetic chromatography method for the simultaneous determination of furanic compounds in honey and vegetable oils. Talanta 97:23–31.  https://doi.org/10.1016/j.talanta.2012.03.056 CrossRefGoogle Scholar
  50. Yamada P, Nemoto M, Shigemori H, Yokota S, Isoda H (2011) Isolation of 5-(hydroxymethyl)furfural from lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med 77:434–440.  https://doi.org/10.1055/s-0030-1250402 CrossRefGoogle Scholar
  51. Zappala A, Fallico B, Arena E, Verzera A (2005) Methods for the determination of HMF in honey: a comparison. Food Control 16:273–277.  https://doi.org/10.1016/j.foodcont.2004.03.006 CrossRefGoogle Scholar
  52. Zhang JH, Li JK, Tang YJ, Xue GX (2013) Rapid method for the determination of 5-hydroxymethylfurfural and levulinic acid using a double-wavelength UV spectroscopy. Sci World J 2013:1–6.  https://doi.org/10.1155/2013/506329 Google Scholar
  53. Zhao L, Chen JP, Su JY, Li L, Hu SQ, Li B, Zhang X, Xu ZB, Chen TF (2013) In Vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J Agr Food Chem 61:10604–10611.  https://doi.org/10.1021/jf403098y CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Tufan Güray
    • 1
  • Neşe Yılmaz Tuncel
    • 2
  • Muzaffer Tunçel
    • 3
  • Ulku Dilek Uysal
    • 4
    Email author
  1. 1.Department of Chemistry, Faculty of Arts and ScienceEskisehir Osmangazi UniversityEskisehirTurkey
  2. 2.Department of Food Technology, School of Applied Sciences of ÇanakkaleOnsekiz Mart UniversityÇanakkaleTurkey
  3. 3.EskişehirTurkey
  4. 4.Department of Chemistry, Faculty of ScienceEskisehir Technical UniversityEskişehirTurkey

Personalised recommendations