Synthesis and spectroscopic studies of carbon nanosheets (CNSs) produced by pyrolysis of phthalazinium betaines at relatively lower temperature

  • Barıs GüzelEmail author
  • Nihat Celebi
  • Gürcan Yıldırım
Original Paper


The main scope of this comprehensive study is to investigate the annealing temperature effects (300 °C ≤ T ≤ 500 °C) on the crucial properties as regards the characteristic bond structures, surface morphology, crystallinity, crystal plane alignments, phase purity, local elemental compositions and distributions of the carbon nanosheets (CNSs). The materials are prepared by the solid-state air pyrolysis of the compound, 2-phenylphthalazin-2-ium-4-olate (phthalazinium betaine). Characterization of compounds prepared in air atmosphere conditions is performed by thermal gravimetric analysis, Fourier transformation-infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and electron-dispersive X-ray techniques. It is found that the temperature value of 350 °C favors the formation velocity of CNSs due to the transition in more turbostratic structure of the system. In fact, the product (prepared at 350 °C) exhibits the largest nucleation and growth rates on the surface. Thus, the distribution (regular grain orientation) of CNSs is observed to be most homogenous, leading to the larger nestlike structures with more corrugated and bunched forms (much sharper edges) in the crystal structure. All the results obtained demonstrate that the best product with unique features is an intriguing material for potential applications in nanoelectronics and biomedical systems.


Carbon nanosheets Corrugation Phthalazinium betaine Scanning electron microscopy Turbostratic structure 


Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.


  1. Aitken RA, Karodia N, Lightfoot PJ (2000) The solid state conformation of oxo stabilised ylides: X-ray structure of four new polyoxo phosphorus ylides. Chem Soc Perkin Trans 2:333–340CrossRefGoogle Scholar
  2. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800CrossRefGoogle Scholar
  3. Baikousi M, Dimos K, Bourlinos AB, Zboril R, Papadas I, Deligiannakis Y, Karakassides MA (2012) Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Appl Surf Sci 258:3703–3709CrossRefGoogle Scholar
  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  5. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, deHeer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRefGoogle Scholar
  6. Booth IR, Pourkomailian B, McLaggan D, Koo SPJ (1994) Mechanisms controlling compatible solute accumulation: a consideration of the genetic sand physiology of bacterial osmoregulation. J Food Eng 22:81–397CrossRefGoogle Scholar
  7. Bourlinos AB, Steriotis TA, Zboril R, Georgakilas V, Stubos AJ (2009) Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. Mater Sci 44:1407–1411CrossRefGoogle Scholar
  8. Canavar PE, Eksin E, Erdem A (2015) Electrochemical monitoring of the interaction between mitomycin C and DNA at chitosan–carbon nanotube composite modified electrodes. Turk J Chem 39:1–12CrossRefGoogle Scholar
  9. Cayley S, Lewis BA, Record MT (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. Bacteriol 174(5):1586–1595CrossRefGoogle Scholar
  10. Chung DDL (2002) Review graphite. J Mater Sci 37(8):1475–1489CrossRefGoogle Scholar
  11. Dasgupta K, Sathiyamoorthy D (2003) Disordered carbon–its preparation, structure, and characterization. Mater Sci Technol 19:995–1002CrossRefGoogle Scholar
  12. Dennis N, Katritzky AR, Ramaiah M (1976) 1,3-Dipolar character of six-membered aromatic rings. Part XI. 1-Oxido-3-phenylphthalazinium. J Chem Soc Perk Trans 1 21:2281–2284CrossRefGoogle Scholar
  13. Di C, Wei D, Yu G, Liu Y, Guo Y, Zhu D (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293CrossRefGoogle Scholar
  14. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRefGoogle Scholar
  15. Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nature Commun 4:1539CrossRefGoogle Scholar
  16. Feng H, Wu Y, Li J (2014) Direct exfoliation of graphite to graphene by a facile chemical approach. Small 10(11):2233–2238CrossRefGoogle Scholar
  17. Fischer E, Besthorn E (1882) Suldoharnstoffe des phenylhydrazines. Liebigs Ann Chem 212:316CrossRefGoogle Scholar
  18. Fonts I, Juan A, Gea G, Murilla MB, Sa’nchez JL (2008) Sewage sludge pyrolysis in fluidized bed, 1: influence of operational conditions on the product distribution. Ind Eng Chem Res 47:5376–5385CrossRefGoogle Scholar
  19. French BL, Wang JJ, Zhu MY, Holloway BCJ (2005) Structural characterization of carbon nanosheets via X-Ray scattering. J Appl Phys 97:114317CrossRefGoogle Scholar
  20. Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298:90–97CrossRefGoogle Scholar
  21. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  22. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761CrossRefGoogle Scholar
  23. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Yurii K, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRefGoogle Scholar
  24. Huang H, Chen W, Chen S, Wee ATS (2008) Bottom-up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12):2513–2518CrossRefGoogle Scholar
  25. Huisgen R (1963) 1,3-Dipolar cycloadditon. Past and future. Angew Chem Int Edit 2:565–598CrossRefGoogle Scholar
  26. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43(15):5092–5101CrossRefGoogle Scholar
  27. Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325CrossRefGoogle Scholar
  28. Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907CrossRefGoogle Scholar
  29. Kuang Q, Xie SY, Jiang ZY, Zhang XH, Xie ZX, Huang RB, Zheng LS (2004) Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Carbon 42(46):1737–1741CrossRefGoogle Scholar
  30. Kuzmenko AB, Van Heumen E, Carbone F, Van der Marel D (2008) Universal dynamical conductance in graphite. Phys Rev Lett 100:117401CrossRefGoogle Scholar
  31. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. J Sci 321:385–388CrossRefGoogle Scholar
  32. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8):1686–1695CrossRefGoogle Scholar
  33. Liu M, Li J (2015) Heating treated carbon nanotubes as highly active electrocatalysts for oxygen reduction reaction. Electrochim Acta 154:177–183CrossRefGoogle Scholar
  34. Liu Z, Wu Y, Li J (2015) One-step synthesis of MnO2 flower/carbon nanotube with improved lithium storage properties. Nanosci Nanotechnol 15:2896–2901CrossRefGoogle Scholar
  35. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRefGoogle Scholar
  36. Molina IS, Ince M, Bottari G, Claessens CG, Martinez-Diaz MV, Torres T (2014) Encapsulation of phthalocyanine-C60 fullerene conjugates into metallosupramolecular subphthalocyanine capsules: a turn of the screw. Turk J Chem 38:1006–1012CrossRefGoogle Scholar
  37. Muradov N, Schwitter A (2002) Formation of conical carbon structures on vapor-grown carbon filaments. Nano Lett 2:673–676CrossRefGoogle Scholar
  38. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  39. Ollis WD, Stanforth SP, Ramsden CA (1985) Heterocyclic mesomeric betaines. Tetrahedron 41(12):2239–2329CrossRefGoogle Scholar
  40. Qi JL, Wang X, Tian HW, Peng YS, Liu C, Zheng WT (2009) Syntheses of carbon nanomaterials by radio frequency plasma enhanced chemical vapor deposition. J Alloy Compd 486:265–272CrossRefGoogle Scholar
  41. Qin Y, Eggers M, Staedler T, Jiang X (2007) Symmetric growth of carbon nanosheets on Cu nanowires by a surface diffusion mechanism. Nanotechn 18:345607CrossRefGoogle Scholar
  42. Raoof JB, Ojani R, Baghayeri M (2013) Fabrication of layer-by-layer deposited films containing carbon nanotubes and poly(malachite green) as a sensor for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Turk J Chem 37:36–50Google Scholar
  43. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few- layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRefGoogle Scholar
  44. Sakai N, Funabashi M, Hamada T, Minakata S, Ryu I, Komatsu M (1999) Synthesis of mesomeric betaines containing a pyrrolo- or imidazotriaziniumolate system and their cycloaddition with acetylenic dipolarophiles leading to triazocinone derivatives. Tetrahedron 55:13703–13724CrossRefGoogle Scholar
  45. Schmidt A (2003) Heterocyclic mesomeric betaines and analogs in natural product chemistry. Betainic alkaloids and nucleobases. Adv Heterocycl Chem 85:67–171CrossRefGoogle Scholar
  46. Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3):630–635CrossRefGoogle Scholar
  47. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  48. Suuronen J, Pitkanen I, Halttunen H, Moilanen RJ (2002) Formation of the main gas compounds during thermal analysis and pyrolysis: betaine and betaine monohydrate. Therm Anal Calorim 69(1):359–369CrossRefGoogle Scholar
  49. Viertorinne M, Valkonen J, Pitkanen I, Mathlouthi M, Nurmi J (1999) Crystal and molecular structure of anhydrous betaine, (CH3)3NCH2CO2. J Mol Struct 477:23–29CrossRefGoogle Scholar
  50. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14):2867–2872CrossRefGoogle Scholar
  51. Zhao X, Outlaw RA, Wang JJ, Zhu MY, Smith GD, Holloway BC (2006) Thermal desorption of hydrogen from carbon nanosheets. J Chem Phys 124(19):194704CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Environment and Cleaner Production Institute, TUBITAK Marmara Research CenterGebzeTurkey
  2. 2.Department of Chemistry, Faculty of Science and ArtAbant Izzet Baysal UniversityGölköyTurkey
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringAbant Izzet Baysal UniversityGölköyTurkey

Personalised recommendations