Conformational, structural, electronic, and vibrational investigations on 5-methyl-4-(2-thiazolylazo)resorcinol by FT-IR, FT–Raman, NMR, and DFT

  • Y. ErdogduEmail author
  • Ü. C. Başköse
  • S. Sağlam
Original Paper


The all conformers of 5-methyl-4-(2-thizolylazo)resorcinol have been identified by Spartan 13 software. All conformers have been optimized B3LYP/6-311G (d, p) level of theory in Gaussian 09 software. According to potential energy surface search, 5-methyl-4-(2-thizolylazo)resorcinol has eight conformers. All the structural parameters of the most stable conformer of 5-methyl-4-(2-thizolylazo)resorcinol are predicted using DFT (B3LYP) method with the same basis set given above. The vibrational frequencies are recorded by the Fourier transform infrared (FT-IR 4000–550 cm−1) and Fourier transform Raman (FT–Raman; 4000–100 cm−1) spectra in the powder form. The vibrational frequencies are predicted and compared with experimental FT-IR and FT–Raman ones. The experimental 1H and 13C NMR spectra have been recorded and compared with the theoretical chemical shifts determined by the GIAO method. The results of UV–Vis spectra of molecule are also presented. Theoretical results compared with the experimental results for the identification and characterization of 5-methyl-4-(2-thizolylazo)resorcinol molecule.


5-Methyl-4-(2-thizolylazo)resorcinol DFT FT-IR and FT–Raman spectra NMR and UV–Vis spectra 



  1. Asath RM, Premkumar S, Mathavan T, Benial AMF (2017) Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide. J Mol Struct 1134:143–156. CrossRefGoogle Scholar
  2. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. CrossRefGoogle Scholar
  3. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. CrossRefGoogle Scholar
  4. Boyle NMO, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845. CrossRefGoogle Scholar
  5. Brockway LO, Roberts JM (1939) The crystal structure of hexamethylbenzene and the length of the methyl group bond to aromatic carbon atoms. J Chem Soc. Google Scholar
  6. Chotima R, Boonseng B, Piyasaengthong A, Songsasen A, Chainok K (2018) Crystal structure of 3-[2-(1,3-thia-zol-2-yl)diazen-1-yl]pyridine-2,6-di-amine monohydrate. Acta Cryst E74:563–565Google Scholar
  7. Chung Y, Chung W (2003) Determination of Co(II) Ion as 4-(2-thiazolylazo) resorcinol or 5-methyl-4-(2-thiazolylazo)resorcinol chelate by reversed-phase capillary high-performance liquid chromatography. Bull Korean Chem Soc 24(12):1781–1784. CrossRefGoogle Scholar
  8. Dereli Ö, Erdogdu Y, Gulluoglu MT, Türkkan E, Özmen A, Sundaraganesan N (2012) Vibrational spectral and quantum chemical investigations of tert-butyl-hydroquinone. J Mol Struct 1012:168–176. CrossRefGoogle Scholar
  9. Erdogdu Y, Güllüoğlu MT, Kurt M (2009) DFT, FT-Raman, FT-IR and NMR studies of 2-fluorophenylboronic acid. J Raman Spect 40(11):1615–1623. CrossRefGoogle Scholar
  10. Erdogdu Y, Guzel M, Güllüoglu MT, Amalanathan M, Saglam S, Joe IH (2014) Molecular structure, vibrational spectral investigation and the conformational analysis of 4-methylesculetin. Opt Spectrosc 116:348–359. CrossRefGoogle Scholar
  11. Frisch A, Nielson AB, Holder AJ (2000) Gaussview user manual. Gaussian Inc., PittsburghGoogle Scholar
  12. Frisch MJ et al (2009) Gaussian 09 Revision B.01. Gaussian Inc., WallingfordGoogle Scholar
  13. Fronczek FR (2014) Experimental crystal structure determination, Deposition code CCDC 168981.
  14. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218:747–754. CrossRefGoogle Scholar
  15. Gaokar UG, Eshwar MC (1982) Rapid spectrophotometric determination of manganese(II) with 4-(2-thiazolylazo)-resorcinol. Mikrochim Acta 78:247–252. CrossRefGoogle Scholar
  16. Gavazov KB, Lekova VD, Dimitrov AN, Patronov GI (2007) The solvent extraction and spectrophotometric determination of vanadium (V) with 4-(2-thiazolylazo)resorcinol and tetrazolium salts. Cent Eur J Chem 5(1):257–270. Google Scholar
  17. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50:2981–2992. CrossRefGoogle Scholar
  18. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94J. Comput Chem 17:490–519.;2-P CrossRefGoogle Scholar
  19. Joseph L, Sajan D, Reshmy R, Sasi BSA, Erdogdu Y, Thomas KK (2012) Vibrational spectra, structural conformations, scaled quantum chemical calculations and NBO analysis of 3-acetyl-7-methoxycoumarinSpectrochim. Acta Part A 99:234–247. CrossRefGoogle Scholar
  20. Karamanis P, Pouchan C, Maroulis G (2008) Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Phys Rev A 77:013201. CrossRefGoogle Scholar
  21. Kleinman DA (1962) Nonlinear Dielectric polarization in optical media. Phys Rev 126:1977–1979. CrossRefGoogle Scholar
  22. Krishnakumar V, Muthunatesan S (2006) FT-IR, FT-Raman spectra and scaled quantum mechanical study of 2,3-dihydroxy pyridine and 2,4-dihyroxy-3-nitropyridine. Spectrochim Acta A 65:818–825. CrossRefGoogle Scholar
  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B37:785–789. CrossRefGoogle Scholar
  24. Luque FJ, Lopez JM, Orozco M (2000) Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Acc 103:343–345. CrossRefGoogle Scholar
  25. Menek N, Eren E, Topcu S (2006) Kinetic investigation of an azo dye oxidation by hydrogen peroxide in aqueous surfactant solution. Dyes Pigment 68:205–210. CrossRefGoogle Scholar
  26. Michalska D (2003) RAINT program. Wroclaw University of Technology, PolandGoogle Scholar
  27. Michalska D, Bienko DC, Bienko AJA, Latajaka Z (1996) Density functional, Hartree—Fock, and MP2 studies on the vibrational spectrum of phenol. J Phys Chem 100:17786–17790. CrossRefGoogle Scholar
  28. Okulik N, Jubert AH (2005) Theoretical analysis of the reactive sites of non–steroidal anti–inflammatory drugs. J Mol Des 4:17–30. Accessed 1 Sept 2019
  29. Parlak C, Akdogan M, Yildirim G, Karagoz N, Budak E, Terzioglu C (2011) Density functional theory study on the identification of 3-[(2-morpholinoethylimino)methyl]benzene-1,2-diol. Spectrochim Acta Part A 79:263–271. CrossRefGoogle Scholar
  30. Robertson JM (1936) The structure of resorcinol a quantitative X-ray investigation. Proc R Soc A Math Phys Sci 157(890):79–99. Google Scholar
  31. Roeges NPG (1994) A guide to the complete interpretation of infrared spectral od organic structures. Wiley, New YorkGoogle Scholar
  32. Sarıkaya EK, Dereli Ö, Erdogdu Y, Güllüoglu MT (2013) Molecular structure and vibrational spectra of 7-ethoxycoumarin by density functional method. J Mol Struct 1049:220–226. CrossRefGoogle Scholar
  33. Schlegel HB (1975). PhD thesis, Queen’s University, Kingston, Ontario, CanadaGoogle Scholar
  34. Seferoğlu Z, Ertan N, Kickelbick G, Hökelek T (2009) Single crystal X-ray structure analysis for two thiazolylazo indole dyes. Dyes Pigm 82:20–25. CrossRefGoogle Scholar
  35. Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC Press, Boca RatonGoogle Scholar
  36. Smolinska M, Korkuna O, Vrublevska T, Rudchuk P, Teslyar G (2015) Development and validation of the simple and sensitive spectrophotometric method of sulphanilamides determination with 4-(2-thiazolylazo)-resorcinol in veterinary preparations. Open Chem 13:1254–1268. CrossRefGoogle Scholar
  37. Socrates G (2001) Infrared and Raman characteristic group frequencies—tables and charts, 3rd edn. Wiley, ChichesterGoogle Scholar
  38. Soylak M, Tuzen M (2008) Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations. J Hazard Mater 152:656–661. CrossRefGoogle Scholar
  39. Spartan 18 (2008), Wavefunction, Irvine, CA, USAGoogle Scholar
  40. SQM version 1.0, Scaled Quantum Mechanical Force Field (2013) Green acres road. Fayetteville, Arkansas, p 72703Google Scholar
  41. Subashchandrabose S, Krishnan AR, Saleem H, Thanikachalam V, Manikandan G, Erdogdu Y (2010) FT-IR, FT-Raman, NMR spectral analysis and theoretical NBO, HOMO–LUMO analysis of bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)ethane by ab initio HF and DFT methods. J Mol Struct 981:59–70. CrossRefGoogle Scholar
  42. Subashchandrabose S, Saleem H, Erdogdu Y, Dereli Ö, Thanikachalam V, Jayabharathi J (2012) Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)-3-methylbutanoic acid. Spectrochim Acta Part A 86:231–241. CrossRefGoogle Scholar
  43. Subrahmanyam B, Eshwar MC (1976a) Rapid extraction-spectrophotometric determination of gold(III) with 4-(2-thiazolylazo)-resorcinol. Anal Chim Acta 82:435–437. CrossRefGoogle Scholar
  44. Subrahmanyam B, Eshwar MC (1976b) Spectrophotometric determination of chromium(III) with 4-(2-thiazolylazo)-resorcinol. Mikrochim Acta 66:579–584. CrossRefGoogle Scholar
  45. Sundaraganesan N, Saleem H, Mohan S, Ramalingam M, Sethuraman V (2005) FTIR, FT-Raman spectra and ab initio DFT vibrational analysis of 2-bromo-4-methyl-phenylamine, Spectrochim. Acta A 62:740–751. CrossRefGoogle Scholar
  46. Varsanyi G (1974) Assignments for vibrational spectra of seven hundred benzene derivatives, vol I. Adam Hilger, LondonGoogle Scholar
  47. Velraj G, Soundharam S, Sridevi C (2015) Investigation of structure, vibrational, electronic, NBO and NMR analyses of 2-chloro-4-nitropyridine (CNP), 2-chloro-4-methyl-5-nitropyridine (CMNP) and 3-amino-2-chloro-4-methylpyridine (ACMP) by experimental and theoretical approach. Spectrochimica Acta Part A 137:790–803. CrossRefGoogle Scholar
  48. Wang Z, Chen J, Li L, Zhou Z, Geng Y, Sun T (2015) Detailed structural study of β-artemether: density functional theory (DFT) calculations of Infrared, Raman spectroscopy, and vibrational circular dichroism. J Mol Struct 1097:61–68. CrossRefGoogle Scholar
  49. Zaitoun MA, El-Qisairi AK, Momani KA, Qaseer HA, Alhalasah W (2014a) Solid-phase extraction employing 5-methyl-4-(2-thiazolylazo)resorcinol entrapped in sol-gel glass as a sorbent resin to remove Zinc ions. J Environ Occup Sci 3:154–161. CrossRefGoogle Scholar
  50. Zaitoun MA, Momani K, Jaradat Q, Momani I, Qurashi I (2014b) Synthesis of an organic chelate doped sol gel filter to remove Cu(II) ions from aqueous solutions. Jordan J Chem 9(2):81–96. CrossRefGoogle Scholar
  51. Zhang R, Dub B, Sun G, Sun Y (2010) Experimental and theoretical studies on o-, m- and p-chlorobenzylidene aminoantipyrines. Spectrochim Acta Part A 75:1115–1124. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsGazi UniversityAnkaraTurkey
  2. 2.Photonics Application and Research CenterGazi UniversityAnkaraTurkey

Personalised recommendations