Advertisement

Effect of extraction solvent on the phenolic compounds content and antioxidant activity of Ramon nut (Brosimum alicastrum)

  • V. M. Moo-HuchinEmail author
  • J. C. Canto-Pinto
  • L. F. Cuevas-Glory
  • E. Sauri-Duch
  • E. Pérez-Pacheco
  • D. Betancur-Ancona
Original Paper
  • 7 Downloads

Abstract

Ramon nut (Brosimum alicastrum) is a vegetable product of significant importance in the Mayan culture given that it is a part of their diet; however, it has not yet been fully studied. The effect of seven solvent systems on the content of total phenolic compounds (TPC), extraction yield, total flavonoids (TF) and antioxidant activity was evaluated and the content of individual phenolic compounds of Ramon nut was analyzed by HPLC. The results reveal that the type of solvent and its polarity has a significant effect on the extraction of antioxidants and on the quantitative analysis of the Ramon nut. Of all the solvents used, the ethanol/water extract (1:1, v/v) (S6) was identified as the most efficient solvent in the extraction process, with a higher TPC content, greater antioxidant activity (with the reduction power assay) and a higher content of gallic acid, chlorogenic acid and vanillic acid. A high correlation was found between TPC and TF vs antioxidant activity, suggesting the possible contribution of the phenolic compounds in the antioxidant activity of the Ramon nut. The Ramon nut extraction with S6 reduced the TBARS content of cooked hamburger meat, stored at 4 °C for 14 days.

Graphical Abstract

Keywords

Antioxidants Brosimum alicastrum TPC TBA Ramon nut 

Notes

Acknowledgements

The authors would like to express their gratitude to the Tecnológico Nacional de México, for the financial support for the project 6331.17-P “Actividad antioxidante, actividad anti-diabética in vitro y contenido de compuestos fenólicos de harina de semillas de Brosimum alicastrum, extraído con diferentes disolventes”.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115:785–788.  https://doi.org/10.1016/j.foodchem.2008.12.005 CrossRefGoogle Scholar
  2. Amorati R, Valgimigli L (2018) Methods to measure the antioxidant activity of phytochemicals and plant extracts. J Agric Food Chem 66:3324–3329.  https://doi.org/10.1021/acs.jafc.8b01079 CrossRefGoogle Scholar
  3. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436.  https://doi.org/10.1016/j.jfoodeng.2013.01.014 CrossRefGoogle Scholar
  4. Babbar N, Oberoi HS, Sandhu SK, Bhargav VK (2014) Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol 51:2568–2575.  https://doi.org/10.1007/s13197-012-0754-4 CrossRefGoogle Scholar
  5. Bhuyan DJ, Vuong QV, Chalmers AC, van Altena IA, Bowyer MC, Scarlett CJ (2016) Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction. Chem Pap 70:567–575.  https://doi.org/10.1515/chempap-2015-0237 Google Scholar
  6. Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, Visentainer JV (2014) Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J 8:1–9.  https://doi.org/10.1186/s13065-014-0048-1 CrossRefGoogle Scholar
  7. Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21:1–38.  https://doi.org/10.3390/molecules21070901 CrossRefGoogle Scholar
  8. Can-Cauich CA, Sauri-Duch E, Betancur-Ancona D, Chel-Guerrero L, Gonzalez-Aguilar GA, Cuevas-Glory LF, Pérez-Pacheco E, Moo-Huchin VM (2017) Tropical fruit peel powders as functional ingredients: evaluation of their bioactive compounds and antioxidant activity. J Funct Foods 37:501–506.  https://doi.org/10.1016/j.jff.2017.08.028 CrossRefGoogle Scholar
  9. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22:296–302.  https://doi.org/10.1016/j.jfda.2013.11.001 CrossRefGoogle Scholar
  10. Durán-García R, Méndez-González M, Larqué-Saavedra A (2017) The biodiversity of the Yucatan Peninsula: a natural laboratory. In: Cánovas FM, Luttge U, Matyssek R (eds) Progress in botany 78, 1st edn. Springer, Cham, Switzerland, pp 237–258Google Scholar
  11. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal 24:1043–1048.  https://doi.org/10.1016/j.jfca.2011.01.008 CrossRefGoogle Scholar
  12. Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ, Miyashita K, van Camp J, Alasalvar C, Ismail AB, Elmore S, Birch G, Charalampopoulos D, Astley SB, Pegg R, Zhou P, Finglas P (2018) Antioxidant activity, total phenolics and flavonoids contents: should we ban in vitro screening methods? Food Chem 264:471–475.  https://doi.org/10.1016/j.foodchem.2018.04.012 CrossRefGoogle Scholar
  13. Horax R, Hettiarachchy N, Chen P (2010) Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). J Agric Food Chem 58:4428–4433.  https://doi.org/10.1021/jf9029578 CrossRefGoogle Scholar
  14. Mohd-Esa N, Hern FS, Ismail A, Yee CL (2010) Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chem 122:1055–1060.  https://doi.org/10.1016/j.foodchem.2010.03.074 CrossRefGoogle Scholar
  15. Moo-Huchin VM, Estrada-Mota I, Estrada-León R, Cuevas-Glory L, Ortiz-Vázquez E, Vargas MDL, Betancur-Ancona D, Sauri-Duch E (2014) Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chem 152:508–515.  https://doi.org/10.1016/j.foodchem.2013.12.013 CrossRefGoogle Scholar
  16. Musa KH, Abdullah A, Jusoh K, Subramaniam V (2011) Antioxidant activity of pink-flesh guava (Psidium guajava L.): effect of extraction techniques and solvents. Food Anal Method 4:100–107.  https://doi.org/10.1007/s12161-010-9139-3 CrossRefGoogle Scholar
  17. Naveed M, BiBi J, Kamboh AA, Suheryani I, Kakar I, Fazlani SA, FangFang X, Ali Kalhoro S, Yunjuan L, Kakar MU, Abd El-Hack M, Noreldin A, Zhixiang S, LiXia C, XiaoHui Z (2018) Pharmacological values and therapeutic properties of black tea (Camellia sinensis): a comprehensive overview. Biomed Pharmacother 100:521–531.  https://doi.org/10.1016/j.biopha.2018.02.048 CrossRefGoogle Scholar
  18. Nicácio AE, Rotta EM, Boeing JS, Barizão ÉO, Kimura E, Visentainer JV, Maldaner L (2017) Antioxidant activity and determination of phenolic compounds from Eugenia involucrata DC. Fruits by UHPLC-MS/MS. Food Anal Method 10:2718–2728.  https://doi.org/10.1007/s12161-017-0840-3 CrossRefGoogle Scholar
  19. Ozer HK (2017) Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): comparison with commercial nuts. Int J Food Prop 20:2772–2781.  https://doi.org/10.1080/10942912.2016.1252389 CrossRefGoogle Scholar
  20. Pérez-Pacheco E, Moo-Huchin VM, Estrada-León RJ, Ortiz-Fernández A, May-Hernández LH, Ríos-Soberanis CR, Betancur-Ancona D (2014) Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydr Polym 101:920–927.  https://doi.org/10.1016/j.carbpol.2013.10.012 CrossRefGoogle Scholar
  21. Radojković M, Moreira MM, Soares C, Fátima Barroso M, Cvetanović A, Švarc-Gajić J, Simone M, Delerue-Matos C (2018) Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: optimization and characterization of the antioxidant activity and phenolic composition. J Chem Technol Biotechnol 93:1684–1693.  https://doi.org/10.1002/jctb.5541 CrossRefGoogle Scholar
  22. Rojano BA, Gaviria CA, Saez JA (2008) Determinación de la actividad antioxidante en un modelo de peroxidación lipídica de mantequilla inhibida por el isoespintanol. Vitae 15:212–218Google Scholar
  23. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17:512–531.  https://doi.org/10.1111/1541-4337.12330 CrossRefGoogle Scholar
  24. Selvamuthukumaran M, Shi J (2017) Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality Safety 1:61–81.  https://doi.org/10.1093/fqsafe/fyx004 CrossRefGoogle Scholar
  25. Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30:3268–3295.  https://doi.org/10.1002/jssc.200700261 CrossRefGoogle Scholar
  26. Vázquez G, Fontenla E, Santos J, Freire MS, González-Álvarez J, Antorrena G (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crops Prod 28:279–285.  https://doi.org/10.1016/j.indcrop.2008.03.003 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Tecnológico Nacional de México, Instituto Tecnológico de MéridaMéridaMexico
  2. 2.Instituto Tecnológico Superior de Calkiní en el Estado de CampecheCalkiníMexico
  3. 3.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations