Use of ultrasound-assisted co-precipitation route to obtain CuMnO2 semiconductor nanomaterials

  • Maria Poienar
  • Antoanetta Lungu
  • Paula SfirloagaEmail author
  • Mihai Lungu
  • Ciprian Valentin Mihali
  • Paulina Vlazan
Original Paper


CuMnO2 nanoparticles were obtained for the first time by sonochemical synthesis in an aqueous solution of sodium hydroxide containing soluble copper and manganese nitrate reactants without any further thermal treatment. Experiments were performed at different lengths of time (20 min, 30 and 40 min) and ultrasound amplitude of 80%. The materials present the expected crednerite structure (C2/m space group), and the nanoparticles average size and morphology for each sample are studied by nanoparticle tracking analysis method, respectively, by transmission electron microscopy. The as-obtained materials display p-type semiconductivity behavior at room temperature and the value for direct optical band gap EG is estimated to be approximately ~ 3.6 eV. The study of the magnetic properties for the nanocrystalline crednerite samples reveals 2D magnetic behavior below 110 K and a weak ferromagnetic component at ~ 20 K.


Ultrasound Crednerite Nanoparticles Magnetism 



This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, Project Number PN-II-RU-TE-2014-4-2179. The authors thank A. Dabici, C. Ianasi and D. Ursu for help during the materials characterisation.


  1. Ahmed J, Mao Y (2015) Delafossite CuAlO2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions. Nanomater Sustain Energy. Google Scholar
  2. Ahmed J, Poltavets VV, Prakash J, Alshehri SM, Ahamad T (2016) Sol–gel synthesis, structural characterization and bifunctional catalytic activity of nanocrystalline delafossite CuGaO2 particles. J Alloys Compd 688:1157–1161. CrossRefGoogle Scholar
  3. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. CrossRefGoogle Scholar
  4. Benreguia N, Barnabé A, Trari M (2015) Sol–gel synthesis and characterization of the delafossite CuAlO2. J Sol Gel Sci Techn 75:670–679. CrossRefGoogle Scholar
  5. Cabanas-Polo S, Gonzalez Z, Sanchez-Herencia AJ, Ferrari B (2015) Influence of ultrasound in the instantaneous synthesis of tridimensional α-Ni(OH)2 nanostructures and derived NiO nanoparticles. Cryst Eng Comm 17:6193–6206. CrossRefGoogle Scholar
  6. Chen H-Y, Lin Y-C, Lee J-S (2015) Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing. Appl Surf Sci 338:113–119. CrossRefGoogle Scholar
  7. Daengsakul S, Thomas C, Mongkolkachit C, Maensiri M (2012) Effects of crystallite size on magnetic properties of thermal-hydro decomposition prepared La1-xSrxMnO3 nanocrystalline powders. Solid State Sci 14:1306–1314. CrossRefGoogle Scholar
  8. Damay F, Poienar M, Martin C, Maignan A, Rodriguez-Carvajal J, André G, Doumerc J-P (2009) Spin-lattice coupling induced phase transition in the S = 2 frustrated antiferromagnet CuMnO2. Phys Rev B. Google Scholar
  9. Doumerc J-P, Trari M, Topfer J, Fournes L, Grenier J-C, Pouchard M, Hagenmuller P (1994) Magnetic properties of the crednerite CuMnO2. Eur J Solid State Inorg Chem 31:705–715Google Scholar
  10. Hiraga H, Makino T, Fukumura T, Weng H, Kawasaki M (2011) Electronic structure of the delafossite-type CuMO2 (M = Sc, Cr, Mn, Fe, and Co): optical absorption measurements and first-principles calculations. Phys Rev B 84:0414114(R). CrossRefGoogle Scholar
  11. Juhasz-Bortuzzo JA, Myszka B, Silva R, Boccaccini AR (2017) Sonosynthesis of vaterite-type calcium carbonate. Cryst Growth Des 17(5):2351–2356. CrossRefGoogle Scholar
  12. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: part I. Periodic structures. Spectrochim Acta Part A 60:689–700. CrossRefGoogle Scholar
  13. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) p-Type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942. CrossRefGoogle Scholar
  14. Kimura T, Lashley JC, Ramirez AP (2006) Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B 73:220401(R). CrossRefGoogle Scholar
  15. Mehta D, Mondal P, Kumar Saharan V, George S (2017) Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: advantage of ultrasonication with precipitation method over conventional method. Ultras Sonochem 37:56–70. CrossRefGoogle Scholar
  16. Moghtada A, Ashiri R (2016) Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrason Sonochem 33:141–149. CrossRefGoogle Scholar
  17. Moharam MM, Rashad MM, Elsayed EM, Abou-Shahba RM (2014) A facile novel synthesis of delafossite CuFeO2 powders. J Mater Sci 25:1798–1803. Google Scholar
  18. Nagarajan R, Tomar N (2009) Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M = Fe, Ga). J Solid State Chem 182:1283–1290. CrossRefGoogle Scholar
  19. Poienar M, Sfirloaga P, Martin C, Ursu D, Vlazan P (2018a) Hydrothermal synthesis of crednerite CuMn1-xMxO2 (M = Mg, Al; x = 0–0.08): structural characterisation and magnetic properties. J Mater Sci 53:2389–2395. CrossRefGoogle Scholar
  20. Poienar M, Martin C, Lebedev OI, Maignan A (2018b) Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals. Solid State Sci 80:39–45. CrossRefGoogle Scholar
  21. Poienar M, Banica R, Sfirloaga P, Ianasi C, Mihali CV, Vlazan P (2018c) Microwave-assisted hydrothermal synthesis and catalytic activity study of crednerite-type CuMnO2 materials. Ceram Int 44:6157–6161. CrossRefGoogle Scholar
  22. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Amsterdam 192:55–69. CrossRefGoogle Scholar
  23. Sheets CW, Mugnier E, Barnabe A, Marks JT, Poeppelmeier RK (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18:7–20. CrossRefGoogle Scholar
  24. Siedliska K, Pikula T, Chocyk D, Jartych E (2017) Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration. Nukleonika 62:165–170. CrossRefGoogle Scholar
  25. Srinivasan R, Chavillon B, Doussier-Brochard C, Cario L, Paris M, Gautron E, Deniard P, Odobel F, Jobic S (2008) Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. J Mater Chem 18:5647–5653. CrossRefGoogle Scholar
  26. Upadhyay S, Parekh K, Pandey B (2016) Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J Alloys Compd 678:478–485. CrossRefGoogle Scholar
  27. Xiong D, Zhang Q, Du Z, Kumar Verma S, Li H, Zhao X (2016) Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J Chem 40:6498–6504. CrossRefGoogle Scholar
  28. Yusuf MS, Rao ML (1995) The magnetic domain effect in the local canted spin ferrite Zn0.5Co0.5Fe2-xCrxO4: a macroscopic and mesoscopic study. J Phys Condens Matter 7:5891–5899. CrossRefGoogle Scholar
  29. Zhang Q, Xiong D, Li H, Xia D, Tao H, Zhao X (2015) A facile hydrothermal route to synthesize delafossite CuMnO2 nanocrystals. J Mater Sci Mater Electron 26:10159–10163. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Maria Poienar
    • 1
  • Antoanetta Lungu
    • 1
  • Paula Sfirloaga
    • 1
    Email author
  • Mihai Lungu
    • 2
  • Ciprian Valentin Mihali
    • 3
  • Paulina Vlazan
    • 1
  1. 1.Institute for Research and Development in Electrochemistry and Condensed MatterTimisoaraRomania
  2. 2.Faculty of PhysicsWest University of TimisoaraTimisoaraRomania
  3. 3.Institute of Life Sciences“Vasile Goldis” Western University of AradAradRomania

Personalised recommendations