Use of ultrasound-assisted co-precipitation route to obtain CuMnO2 semiconductor nanomaterials
Abstract
CuMnO2 nanoparticles were obtained for the first time by sonochemical synthesis in an aqueous solution of sodium hydroxide containing soluble copper and manganese nitrate reactants without any further thermal treatment. Experiments were performed at different lengths of time (20 min, 30 and 40 min) and ultrasound amplitude of 80%. The materials present the expected crednerite structure (C2/m space group), and the nanoparticles average size and morphology for each sample are studied by nanoparticle tracking analysis method, respectively, by transmission electron microscopy. The as-obtained materials display p-type semiconductivity behavior at room temperature and the value for direct optical band gap EG is estimated to be approximately ~ 3.6 eV. The study of the magnetic properties for the nanocrystalline crednerite samples reveals 2D magnetic behavior below 110 K and a weak ferromagnetic component at ~ 20 K.
Keywords
Ultrasound Crednerite Nanoparticles MagnetismNotes
Acknowledgments
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, Project Number PN-II-RU-TE-2014-4-2179. The authors thank A. Dabici, C. Ianasi and D. Ursu for help during the materials characterisation.
References
- Ahmed J, Mao Y (2015) Delafossite CuAlO2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions. Nanomater Sustain Energy. https://doi.org/10.1021/bk-2015-1213.ch004 Google Scholar
- Ahmed J, Poltavets VV, Prakash J, Alshehri SM, Ahamad T (2016) Sol–gel synthesis, structural characterization and bifunctional catalytic activity of nanocrystalline delafossite CuGaO2 particles. J Alloys Compd 688:1157–1161. https://doi.org/10.1016/j.jallcom.2016.07.017 CrossRefGoogle Scholar
- Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093 CrossRefGoogle Scholar
- Benreguia N, Barnabé A, Trari M (2015) Sol–gel synthesis and characterization of the delafossite CuAlO2. J Sol Gel Sci Techn 75:670–679. https://doi.org/10.1007/s10971-015-3737-x CrossRefGoogle Scholar
- Cabanas-Polo S, Gonzalez Z, Sanchez-Herencia AJ, Ferrari B (2015) Influence of ultrasound in the instantaneous synthesis of tridimensional α-Ni(OH)2 nanostructures and derived NiO nanoparticles. Cryst Eng Comm 17:6193–6206. https://doi.org/10.1039/c5ce00876j CrossRefGoogle Scholar
- Chen H-Y, Lin Y-C, Lee J-S (2015) Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing. Appl Surf Sci 338:113–119. https://doi.org/10.1016/j.apsusc.2015.02.112 CrossRefGoogle Scholar
- Daengsakul S, Thomas C, Mongkolkachit C, Maensiri M (2012) Effects of crystallite size on magnetic properties of thermal-hydro decomposition prepared La1-xSrxMnO3 nanocrystalline powders. Solid State Sci 14:1306–1314. https://doi.org/10.1016/j.solidstatesciences.2012.07.009 CrossRefGoogle Scholar
- Damay F, Poienar M, Martin C, Maignan A, Rodriguez-Carvajal J, André G, Doumerc J-P (2009) Spin-lattice coupling induced phase transition in the S = 2 frustrated antiferromagnet CuMnO2. Phys Rev B. https://doi.org/10.1103/PhysRevB.80.094410 Google Scholar
- Doumerc J-P, Trari M, Topfer J, Fournes L, Grenier J-C, Pouchard M, Hagenmuller P (1994) Magnetic properties of the crednerite CuMnO2. Eur J Solid State Inorg Chem 31:705–715Google Scholar
- Hiraga H, Makino T, Fukumura T, Weng H, Kawasaki M (2011) Electronic structure of the delafossite-type CuMO2 (M = Sc, Cr, Mn, Fe, and Co): optical absorption measurements and first-principles calculations. Phys Rev B 84:0414114(R). https://doi.org/10.1103/PhysRevB.84.041411 CrossRefGoogle Scholar
- Juhasz-Bortuzzo JA, Myszka B, Silva R, Boccaccini AR (2017) Sonosynthesis of vaterite-type calcium carbonate. Cryst Growth Des 17(5):2351–2356. https://doi.org/10.1021/acs.cgd.6b01493 CrossRefGoogle Scholar
- Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: part I. Periodic structures. Spectrochim Acta Part A 60:689–700. https://doi.org/10.1016/S1386-1425(03)00279-8 CrossRefGoogle Scholar
- Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) p-Type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942. https://doi.org/10.1038/40087 CrossRefGoogle Scholar
- Kimura T, Lashley JC, Ramirez AP (2006) Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B 73:220401(R). https://doi.org/10.1103/PhysRevB.73.220401 CrossRefGoogle Scholar
- Mehta D, Mondal P, Kumar Saharan V, George S (2017) Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: advantage of ultrasonication with precipitation method over conventional method. Ultras Sonochem 37:56–70. https://doi.org/10.1016/j.ultsonch.2016.12.035 CrossRefGoogle Scholar
- Moghtada A, Ashiri R (2016) Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrason Sonochem 33:141–149. https://doi.org/10.1016/j.ultsonch.2016.05.002 CrossRefGoogle Scholar
- Moharam MM, Rashad MM, Elsayed EM, Abou-Shahba RM (2014) A facile novel synthesis of delafossite CuFeO2 powders. J Mater Sci 25:1798–1803. https://doi.org/10.1007/s10854-014-1801-x Google Scholar
- Nagarajan R, Tomar N (2009) Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M = Fe, Ga). J Solid State Chem 182:1283–1290. https://doi.org/10.1016/j.jssc.2009.01.043 CrossRefGoogle Scholar
- Poienar M, Sfirloaga P, Martin C, Ursu D, Vlazan P (2018a) Hydrothermal synthesis of crednerite CuMn1-xMxO2 (M = Mg, Al; x = 0–0.08): structural characterisation and magnetic properties. J Mater Sci 53:2389–2395. https://doi.org/10.1007/s10853-017-1696-z CrossRefGoogle Scholar
- Poienar M, Martin C, Lebedev OI, Maignan A (2018b) Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals. Solid State Sci 80:39–45. https://doi.org/10.1016/j.solidstatesciences.2018.03.019 CrossRefGoogle Scholar
- Poienar M, Banica R, Sfirloaga P, Ianasi C, Mihali CV, Vlazan P (2018c) Microwave-assisted hydrothermal synthesis and catalytic activity study of crednerite-type CuMnO2 materials. Ceram Int 44:6157–6161. https://doi.org/10.1016/j.ceramint.2017.12.249 CrossRefGoogle Scholar
- Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Amsterdam 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I CrossRefGoogle Scholar
- Sheets CW, Mugnier E, Barnabe A, Marks JT, Poeppelmeier RK (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18:7–20. https://doi.org/10.1021/cm051791c CrossRefGoogle Scholar
- Siedliska K, Pikula T, Chocyk D, Jartych E (2017) Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration. Nukleonika 62:165–170. https://doi.org/10.1515/nuka-2017-0025 CrossRefGoogle Scholar
- Srinivasan R, Chavillon B, Doussier-Brochard C, Cario L, Paris M, Gautron E, Deniard P, Odobel F, Jobic S (2008) Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. J Mater Chem 18:5647–5653. https://doi.org/10.1039/B810064K CrossRefGoogle Scholar
- Upadhyay S, Parekh K, Pandey B (2016) Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J Alloys Compd 678:478–485. https://doi.org/10.1016/j.jallcom.2016.03.279 CrossRefGoogle Scholar
- Xiong D, Zhang Q, Du Z, Kumar Verma S, Li H, Zhao X (2016) Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J Chem 40:6498–6504. https://doi.org/10.1039/C6NJ00253F CrossRefGoogle Scholar
- Yusuf MS, Rao ML (1995) The magnetic domain effect in the local canted spin ferrite Zn0.5Co0.5Fe2-xCrxO4: a macroscopic and mesoscopic study. J Phys Condens Matter 7:5891–5899. https://doi.org/10.1088/0953-8984/7/29/016 CrossRefGoogle Scholar
- Zhang Q, Xiong D, Li H, Xia D, Tao H, Zhao X (2015) A facile hydrothermal route to synthesize delafossite CuMnO2 nanocrystals. J Mater Sci Mater Electron 26:10159–10163. https://doi.org/10.1007/s10854-015-3702-z CrossRefGoogle Scholar