Advertisement

Solvent effects on low-lying absorptions and vibrational spectra of thieno[3,4-b]pyrazines: the role of unconventional C–H···N bonds

  • Marcos V. A. Damasceno
  • Vinícius Manzoni
  • Lucas Modesto-Costa
  • Geanso M. Moura
  • Jordan Del Nero
  • Alberto Torres
  • Rodrigo GesterEmail author
Original Paper
  • 41 Downloads

Abstract

Difunctionalized thieno[3,4-b]pyrazines are a class of fused-ring systems used as precursors for copolymers and since these molecules were first synthesized, there is a long discussion about their photophysics and vibrational properties. For 2,3-dimethylthieno[3,4-b]pyrazine, different degrees of solvation were combined to determine how the environment tunes these molecular properties, which can allow future applications. The present results indicate that unconventional C–H···N hydrogen bonds have great influence in both UV–Vis and IR spectra. The low-energy region is composed by two close nπ* and ππ* absorptions, with the lowest excitation being associated with an nπ* line. This absorption is covered by an intense ππ* explaining the reason why nπ* absorptions were never observed for these polymeric compounds. Another effect of the weak C–H···N bond is to tune the highest vibrational frequencies corresponding to C–H stretching modes of the solute’s methyl groups providing strong and uncommon blueshifts of ~ 15 cm−1 and better stabilizing the solute in the liquid environment.

Keywords

UV–Vis spectra Vibrational frequencies Unconventional hydrogen bond Solvent effects 

Notes

Acknowledgements

This work was supported by the following Brazilian financial agencies: CNPq, CAPES, and FAPEAL.

References

  1. Aicha YA, Bouzzine SM, Fahim ZM, Zair T, Bouachrine M, Hamidi M (2014) Quantum chemical investigations study of the effect of electron donor units on the structural, electronic and optoelectronic properties of diarylthienopyrazine analogs. Comput Theor Chem 1036:22–30.  https://doi.org/10.1016/j.comptc.2014.03.008 CrossRefGoogle Scholar
  2. Balaceanu A, Pasi M, Dans PD, Hospital A, Lavery R, Orozco M (2017) The Role of unconventional hydrogen bonds in determining BII propensities in B-DNA. J Phys Chem Lett 8:21–28.  https://doi.org/10.1021/acs.jpclett.6b02451 CrossRefGoogle Scholar
  3. Bistafa C, Canuto S (2012) Solvent effects on the two lowest-lying singlet excited states of 5-fluorouracil. Theor Chem Acc 132:1432–2234.  https://doi.org/10.1007/s00214-012-1299-3 Google Scholar
  4. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373.  https://doi.org/10.1002/jcc.540110311 CrossRefGoogle Scholar
  5. Céron-Carrasco JP, Siard A, Jacquemin D (2013) Spectral signatures of thieno[3,4-b]pyrazines: theoretical interpretations and design of improved structures. Dyes Pigm 99:972–978.  https://doi.org/10.1016/j.dyepig.2013.08.006 CrossRefGoogle Scholar
  6. Coutinho K, Canuto S (2003) DICE: a Monte Carlo program for molecular liquid simulation, vol 2.8. University of São Paulo, São PauloGoogle Scholar
  7. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) An efficient statistically converged average configuration for solvent effects. Chem Phys Lett 437:148–152.  https://doi.org/10.1016/j.cplett.2007.02.012 CrossRefGoogle Scholar
  8. Delanoye SN, Herrebout WA, van der Veken BJ (2002a) Improper or classical hydrogen bonding? A comparative cryosolutions infrared study of the complexes of HCClF2, HCCl2F, and HCCl3 with dimethyl ether. J Am Chem Soc. 124:7490–7498.  https://doi.org/10.1021/ja0125220 CrossRefGoogle Scholar
  9. Delanoye SN, Herrebout WA, van der Veken BJ (2002b) Blue shifting hydrogen bonding in the complexes of chlorofluoro haloforms with acetone-d6 and oxirane-d4. J Am Chem Soc 124:11854–11855.  https://doi.org/10.1021/ja027610e CrossRefGoogle Scholar
  10. Delgado MCR, Hernández V, Navarrete JTL, Tanaka S, Yamashita Y (2004) Combined spectroscopic and theoretical study of narrow band gap heterocyclic co-oligomers containing alternating aromatic donor and o-quinoid acceptor units. J Phys Chem B 108:2516–2526.  https://doi.org/10.1021/jp0312262 CrossRefGoogle Scholar
  11. Dhas DA, Joe IH, Roy SDD, Balachandran S (2012) Spectroscopic investigation and hydrogen-bonding analysis of triazinones. J Mol Model 18:3587–3608.  https://doi.org/10.1007/s00894-011-1237-7 CrossRefGoogle Scholar
  12. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. ix. an extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728.  https://doi.org/10.1063/1.1674902 CrossRefGoogle Scholar
  13. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  14. Frisch MJ et al (2009) Gaussian 09 revision E.01. Gaussian Inc., WallingfordGoogle Scholar
  15. Galván IF, Sánchez ML, Martín ME, del Valle FJO, Aguilar MA (2003) Geometry optimization of molecules in solution: joint use of the mean field approximation and the free-energy gradient method. J Chem Phys 118:255–263.  https://doi.org/10.1063/1.1525798 CrossRefGoogle Scholar
  16. Gómez-Jiménez MD, Pou-Amérigo R, Ortí E (2009) A theoretical study of the low-lying excited states of thieno[3,4-b]pyrazine. J Chem Phys 131:244105.  https://doi.org/10.1063/1.3274816 CrossRefGoogle Scholar
  17. Guo X, Cao Z (2012) Low-lying electronic states and their nonradiative deactivation of thieno[3,4-b]pyrazine: an ab initio study. J Chem Phys 137:224313.  https://doi.org/10.1063/1.4770229 CrossRefGoogle Scholar
  18. Head-Gordon M, Maurice D, Oumi M (1995) A perturbative correction to restricted open shell configuration interaction with single substitutions for excited states of radicals. Chem Phys Lett 246:114–121.  https://doi.org/10.1016/0009-2614(95)01111-L CrossRefGoogle Scholar
  19. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264.  https://doi.org/10.1021/cr990050q CrossRefGoogle Scholar
  20. Hobza P, Havlas Z (2002) Improper, blue-shifting hydrogen bond. Theor Chem Acc 108:325–334.  https://doi.org/10.1021/cr990050q CrossRefGoogle Scholar
  21. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871.  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  22. Kabanda MM, Mammino L (2012) A comparative study of the dimers of selected hydroxybenzenes. Int J Quantum Chem 112:519–531.  https://doi.org/10.1002/qua.23025 CrossRefGoogle Scholar
  23. Kenning DD, Rasmussen SC (2003) A second look at polythieno[3,4-b]pyrazines: chemical vs electrochemical polymerization and its effect on band gap. Macromolecules 36:6298–6299.  https://doi.org/10.1021/ma034831b CrossRefGoogle Scholar
  24. Kenning DD, Mitchell KA, Calhoun TR, Funfar MR, Sattler DJ, Rasmussen SC (2002) Thieno[3,4-b]pyrazines: synthesis, structure, and reactivity. J Org Chem 67:9073–9076.  https://doi.org/10.1021/jo0262255 CrossRefGoogle Scholar
  25. Koch H, Jörgensen P (1990) Coupled cluster response functions. J Chem Phys 93:3333–3344.  https://doi.org/10.1063/1.458814 CrossRefGoogle Scholar
  26. Kohn W, Sham LJ (1965) Self-Consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138.  https://doi.org/10.1103/physrev.140.a1133 CrossRefGoogle Scholar
  27. Krishnan R, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100.  https://doi.org/10.1002/qua.560140109 CrossRefGoogle Scholar
  28. Li Q, An X, Luan F, Li W, Gong B, Cheng J (2008) Regulating Function of methyl group in strength of CH···O hydrogen bond: a high-level ab initio study. J Phys Chem A 112:3985–3990.  https://doi.org/10.1021/jp800562k CrossRefGoogle Scholar
  29. Ludwig V, Coutinho K, Canuto S (2007) A Monte Carlo-quantum mechanics study of the lowest nπ* and ππ* states of uracil in water. Phys Chem Chem Phys 9:4907–4912.  https://doi.org/10.1039/B704335J CrossRefGoogle Scholar
  30. Manzoni V, Lyra ML, Gester RM, Coutinho K, Canuto S (2010) Study of the optical and magnetic properties of pyrimidine in water combining PCM and QM/MM methodologies. Phys Chem Chem Phys 12:14023–14033.  https://doi.org/10.1039/C0CP00122H CrossRefGoogle Scholar
  31. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129.  https://doi.org/10.1016/0301-0104(81)85090-2 CrossRefGoogle Scholar
  32. Modesto-Costa L, Gester RM, Manzoni V (2017) The role of electrostatic interactions and solvent polarity on the 15 N NMR shielding of azines. Chem Phys Lett 686:189–194.  https://doi.org/10.1016/j.cplett.2017.08.031 CrossRefGoogle Scholar
  33. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622.  https://doi.org/10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  34. Ogawa K, Rasmussen SC (2003) A simple and efficient route to N-functionalized dithieno[3,2-b:2‘,3‘-d]pyrroles: fused-ring building blocks for new conjugated polymeric systems. J Org Chem 68:2921–2928.  https://doi.org/10.1021/jo034078k CrossRefGoogle Scholar
  35. Pranata J, Wierschke SG, Jorgensen WL (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J Am Chem Soc 113:2810–2819.  https://doi.org/10.1021/ja00008a002 CrossRefGoogle Scholar
  36. Rasmussen SC, Sattler DJ, Mitchell KA, Maxwell J (2004) Photophysical characterization of 2,3-difunctionalized thieno[3,4-b]pyrazines. J Lumin 109:111–119.  https://doi.org/10.1016/j.jlumin.2004.01.088 CrossRefGoogle Scholar
  37. Reichardt C (1979) Solvent effects in organic chemistry. Verlag Chemie, WeinheimGoogle Scholar
  38. Roohi H, Bagheri S (2011) Influence of substitution on the strength and nature of CH···N hydrogen bond in XCCH···NH3 complexes. Int J Quantum Chem 111:961–969.  https://doi.org/10.1002/qua.22460 CrossRefGoogle Scholar
  39. Sharma D, Sahoo S, Mishra BK (2014) Molecular modeling in dioxane methanol interaction. J Mol Model 20:2408.  https://doi.org/10.1007/s00894-014-2408-0 CrossRefGoogle Scholar
  40. Shirhatti PR, Maity DK, Wategaonkar S (2013) C–H···Y hydrogen bonds in the complexes of p-cresol and p-cyanophenol with fluoroform and chloroform. J Phys Chem A 117:2307–2316.  https://doi.org/10.1021/jp311596x CrossRefGoogle Scholar
  41. Song QX, Ding ZD, Liu JH, Li Y, Wang HJ (2013) Theoretical study on the binding mechanism between N6-methyladenine and natural DNA bases. J Mol Model 19:1089–1098.  https://doi.org/10.1007/s00894-012-1628-4 CrossRefGoogle Scholar
  42. Wang Y, Peng Q, Hou Q, Zhao K, Liang Y, Li B (2011) Tuning the electronic structures and optical properties of fluorene-based donor-acceptor copolymers by changing the acceptors: a theoretical study. Theor Chem Acc 129:257–270.  https://doi.org/10.1007/s00214-011-0932-x CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Faculdade de Ciências Biológicas, Agrárias, Engenharia e da SaúdeUniversidade Estadual de Mato GrossoTangará da SerraBrazil
  2. 2.Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil
  3. 3.Departamento de QuímicaInstituto Militar de EngenhariaRio de JaneiroBrazil
  4. 4.Instituto de Geociências e EngenhariaUniversidade Federal do Sul e Sudeste do ParáMarabáBrazil
  5. 5.Faculdade de FísicaUniversidade Federal do ParáBelémBrazil
  6. 6.Departmento de FísicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  7. 7.Faculdade de FísicaUniversidade Federal do Sul e Sudeste do ParáMarabáBrazil

Personalised recommendations