Synthesis and investigation of structural, optical, dielectric and electronic properties of a new hybrid: [C13H21N2O2](Cd(SCN)3)

  • Rahma Jabbar
  • Francois Michaud
  • Slaheddine KamounEmail author
Original Paper


A new ferroelectric relaxor: [C13H21N2O2](Cd(SCN)3) procainium tris(thiocyanato) cadmiate(II) was synthesized and studied by single-crystal XRD. This compound crystallizes in the orthorhombic system with acentric space group Pna21. The crystal structure is formed of discrete ionic entities (C13H21N2O2)+ and [Cd(SCN)3]. The cadmium atom has 3N3S hexa coordinated octahedral geometry. The sulfur atoms and the nitrogen atoms are in facial mode (fac). Each pair of cadmium atoms is triply bridged by μ-1,3-SCN–bridge. Consequently, a linear polymeric chain is formed. The procainium cations are bonded to these chains by hydrogen-bonding contacts and π–ring interaction. DSC measurement shows that this compound exhibits a diffuse ferro–paraelectric phase transition around 356 K. Dielectric study exhibits a relaxor behavior characterized by the transition temperature shifts toward higher temperature with the rise of frequency. This behavior was validated by the Vogel–Fulcher relationship and the modified Curie–Weiss law. The diffuseness parameter was γ = 1.96. The optical band gap Eg = 2.20 eV was estimated by diffuse reflection spectroscopy (DRS) investigation.


Structure Ferroelectric relaxor Vogel–Fulcher model Modulus Conductivity 



The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research for LR11ES46.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

11696_2019_691_MOESM1_ESM.docx (20.9 mb)
Supplementary material 1 (DOCX 21402 kb)


  1. Agilent (2012) CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, EnglandGoogle Scholar
  2. Anantha PS, Hariharn K (2005) AC conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Matter Sci Eng B 121:12–19. CrossRefGoogle Scholar
  3. Ang C, Yu Z, Youn HJ, Randall CA, Bhalla AS, Cross LE, Nino J, Lanagan M (2002) Low-temperature dielectric relaxation in the pyrochlore (Bi3/4Zn1/4)2(Zn1/4Ta3/4)2O7 compound. Appl Phys Lett 80(25):4807–4809. CrossRefGoogle Scholar
  4. Ayouchi R, Leinen D, Martin F, Gabas M, Dalchiele E, Ramos-Barrado JR (2003) Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426:68–77. CrossRefGoogle Scholar
  5. Bala R, Kennedy AR, Saneja K, Sharma RP (2006) Catena poly [benzyltrimethyl-ammonium [cadmium(II)-tri-μ2-thiocyanato]]. Acta Cryst E62:m1630–m1632. Google Scholar
  6. Bartlett HE, Jurriaanse A, Haas KD (1969) Activity coefficients of aqueous thiocyanic acid solutions from electromotive force, transference number, and freezing-point depression measurements. Can J Chem 47:2981–2986CrossRefGoogle Scholar
  7. Becke AD (1988) Communication: optical gap in polyacetylene from a simple quantum chemistry exciton model. J Chem Phys 148:044112. CrossRefGoogle Scholar
  8. Bogdanović GA, Medaković V, Milčić MK, Zarić SD (2004) Intramolecular C–H…π interactions in metal porphyrin complexes. Int J Mol Sci 5:174–185. CrossRefGoogle Scholar
  9. Brandenburg K, Berndt M (2001) Diamond Version 2.1. Crystal impact, BonnGoogle Scholar
  10. Chemli R, Kamoun S, Roisnel T (2013) Poly[bis-(μ2-1,3-phenyl-enedi-amine-κ2 N:N′)di-μ-thio-cyanato-κ2 N:S;κ2 S:N-cadmium]. Acta Cryst E69:m292–m293. Google Scholar
  11. Chemli R, Michaud F, Kamoun S (2018) Crystal structure, vibrational spectra, optical and DFT studies of poly[bis(l-methionine)-κS: O cadmium (II) di-μ-thiocyanato- κ2 N:S; κ2S:N]. J Mol Struct 1166:91–101. CrossRefGoogle Scholar
  12. Cross LE (1994) Relaxor ferroelectrics an overview. Ferroelectrics 151:305–320. CrossRefGoogle Scholar
  13. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. CrossRefGoogle Scholar
  14. Delley B (2000) from molecules to solid with the Dmol3 approach. J Chem Phys 113:7756–7764. CrossRefGoogle Scholar
  15. Dmol3 from Materials Studio (2017) Dassault Systèmes BIOVIA, San DiegoGoogle Scholar
  16. Elfaleh N, Kamoun S (2015) Dielectric relaxation and ionic conductivity studies of (C6H20N3)BiCl6·H2O. Ionics 21:2685–2692. CrossRefGoogle Scholar
  17. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Cryst 45:849–854. CrossRefGoogle Scholar
  18. Haisa M, Kashino S (1977) The crystal and molecular structure of 1,4-diethoxybenzene. Acta Cryst B33:485–490.
  19. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78:639. CrossRefGoogle Scholar
  20. Jellibi A, Chaabane I, Guidara K (2016) Experimental and theoretical study of AC electrical conduction mechanisms of organic-inorganic hybrid compound bis (4-acetylanilinium) tetrachlorocadmiate (II). Phys E 80:155–162. CrossRefGoogle Scholar
  21. Karoui S, Kamoun S, Jouini A (2013) Synthesis, structural and electrical properties of [C2H10N2][(SnCl(NCS)2]2. J Solid State Chem 68(197):60–68. CrossRefGoogle Scholar
  22. Kashino SC, Haisa M (1975) Topochemical studies. V. The crystal structure and molecular conformation of bis(2-hydroxyethyl) terephthalate. Acta Cryst B31:1819–1822. CrossRefGoogle Scholar
  23. Lee C, Yang W, Parr RG (1988) A multicenter numerical integration scheme for polyatomic molecules. Phys Rev B 37:785CrossRefGoogle Scholar
  24. Li N, Duan J, Chen H, Chen G (2003) Determination of the binding constant for the inclusion complex between procaine hydrochloride and β-cyclodextrin by capillary electrophoresis. Talanta 59:493–499. CrossRefGoogle Scholar
  25. Liu F, Chen W, You X (2002) Cation-controled formation of N, N0-dialkylimidazolium cadmium–thiocyanate complexes: synthesis and structural characterization. J Solid State Chem 169:199–207CrossRefGoogle Scholar
  26. Mostafa MF, Youssef AA, Khyami SS (2005) The frequency dependence of the conductivity and dielectric relaxation of [(CH2)3(NH3)2]Cu(II)Cl4. Z Naturforsch 60a:507–511Google Scholar
  27. Ninković DB, Janjić GV, Veljković DŽ, Sredojević DN, Zarić SD (2011) What are the preferred horizontal displacements in parallel aromatic–aromatic interactions? significant interactions at large displacements. ChemPhysChem 12:3511–3514. CrossRefGoogle Scholar
  28. Perdew JP (1991) Generalized gradient approximations for exchange and correlation: a look backward and forward. Phys B 172:1–6. CrossRefGoogle Scholar
  29. Pirc R, Blinc R (2007) Vogel–Fulcher freezing in relaxor ferroelectrics. Phys Rev B 76:020101. CrossRefGoogle Scholar
  30. Pontes FM, Leal SH, Leite ER, Longo E, Pizani PS, Chiquito AJ, Machado MAC, Varela JA (2005) Absence of relaxor-like ferroelectric phase transition in (Pb, Sr)TiO3 thin films. Appl Phys A 80:813–817. CrossRefGoogle Scholar
  31. Prabakar K, Narayandass SK, Mangalaraj D (2002) Electrical characterization of polyethylene oxide-alumina composite. Cryst Res Technol 3:1094–1103CrossRefGoogle Scholar
  32. Saidi K, Kamoun S, Ayedi HF, Arous M (2013) Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br 6(C2H9N2)2]n. J Phys Chem Solids 74:1560–1569. CrossRefGoogle Scholar
  33. Schetty G (1970) Neuartige Isomeriefälle bei 1:2-CrIII- und CoIII-Komplexen von o, o′-Dihydroxyazoverbindungen: pyramidal gebundener Stickstoff mit hoher Inversionsbarriere. Helv Chim Acta 53:1437–1459. CrossRefGoogle Scholar
  34. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122. CrossRefGoogle Scholar
  35. Sieradzki A, Trzmiel J, Ptak M, Mączka M (2015) Dielectric relaxation and anhydrous proton conduction in [C2H5NH3][Na0.5Fe0.5(HCOO)3] metal-organic framework. Electron Mater Lett 11:1033–1039. CrossRefGoogle Scholar
  36. Taniguchi M, Ouchi A (1989) Synthese and crystal and molecular structures of tetraethylammonium and tetrapropylammonium tris(thiocyanato)cadmates(II), (R4N][Cd(SCN)3], R = C2H5, C3H7). Bull Chem Soc Jpn 62(2):424–428CrossRefGoogle Scholar
  37. Venkataraman K (1971) The chemistry of synthetic dyes, vol 5. Academic Press Inc, LondonGoogle Scholar
  38. Wojciechowski K, Szuster L (2016) [Azo-Hyd] tautomerism and structure of selected metal complex dyes AM1 and ZINDO/1 methods. Comput Chem 4:97–118. CrossRefGoogle Scholar
  39. Xu WJ, Du ZY, Zhang WX, Chen XM (2016) Structural phase transitions in perovskite compounds based on diatomic or multiatomic bridges. Cryst Eng Commun 18:7915–7928. CrossRefGoogle Scholar
  40. Yang G, Zhu H-G, Liang B-H, Chen X-M (2001) Syntheses and crystal structures of four metal-organic co-ordination networks constructed from cadmium(II) thiocyanate and nicotinic acid derivatives with hydrogen bonds. J Chem Soc Dalton Trans 14:580–585. CrossRefGoogle Scholar
  41. Ye ZG (2008) Handbook of advanced dielectric, piezoelectric and ferroelectric materials: synthesis, properties and applications. Elsevier, New YorkCrossRefGoogle Scholar
  42. Zhang H, Wang X, Zhang K, Teo BK (1998) Crystal engineering in[(12C4)2Na][Cd(SCN)3]: first example of an anionic cadmium thiocyanate coordination solid with a sandwich [(12C4)2Na] + cation as spacer/controller, resulting in a hexagonal arrangement of antiparallel zigzag [Cd(SCN)3-]∞ Chains. Inorg Chem 37:3490–3496. CrossRefGoogle Scholar
  43. Zhang H, Zelmon DE, Price GE, Teo BK (2000) Wide spectral range nonlinear optical crystals of one-dimensional coordination solids [Et4 N][Cd(SCN)3] and [Et4 N][Cd(SeCN)3] and the general design criteria for [R4 N][Cd(XCN)3] (where R = Alkyl and X = S, Se, Te) as NLO crystals. Inorg Chem 39(9):1868–1873. CrossRefGoogle Scholar
  44. Zhang H, Wang XM, Zelmon DE, Teo BK (2001) Synthesis and structure of [(DB24C8)Na][Cd(SCN)(3)]. Formation of a novel linear Cd center dot center dot center dot Cd center dot center dot center dot Cd chain with a mer-CdN3S3 coordination configuration and a new coiled [(DB24C8)Na](+) cation. Inorg Chem 40:1501–1507. CrossRefGoogle Scholar
  45. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, New YorkGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Laboratoire de Génie des Matériaux et Environnement, Ecole Nationale d’Ingénieurs de SfaxUniversite´ de SfaxSfaxTunisia
  2. 2.Service commun d’analyse par diffraction des rayons XUniversité de BrestBrest Cedex 3France

Personalised recommendations