Advertisement

Chemical Papers

, Volume 73, Issue 4, pp 901–907 | Cite as

Optimization of the calcination temperature for the solvent-deficient synthesis of nanocrystalline gamma-alumina

  • Toni IvasEmail author
  • Milica Balaban
  • Vedrana Dosen
  • Jin Miyawaki
  • Kazuki Ito
  • Dragoljub Vrankovic
  • Gordana Ostojic
  • Sasa Zeljkovic
Original Paper
  • 74 Downloads

Abstract

Nano-sized alumina is prepared using a cost-effective solvent-free method with aluminum nitrate and ammonium bicarbonate precursors. Combined investigations by thermal analysis (TG/DTA), X-ray diffraction (XRD), specific surface area (BET), scanning electronic microscopy (SEM), infrared emission spectroscopy (FTIR), dynamic light scattering (DLS) and dilatometry were used to examine the effects of calcination temperature on the formation of Al2O3. XRD analysis shows that the γ-Al2O3 phase forms already at 300 °C and slowly continues to form with increasing temperature indicating a diffusion-controlled reaction as shown by FTIR. The size of the γ-Al2O3 nanocrystalline, as determined by XRD, is between 1.5 and 1.9 nm and slowly increased with the reaction temperature. DLS results revealed that a particle size of γ-Al2O3 dispersed in water grows with increasing reaction temperature due to nanocrystalline particle aggregation, which was additionally confirmed by SEM. The densification behavior of the boehmite and γ-Al2O3 phases was investigated using dilatometry.

Keywords

Al2O3 Solvent-free method Phase transformation Densification 

Notes

Acknowledgements

The authors are grateful for the financial support of the Ministry of Science and Technology of Republic of Srpska (Project 19/6-020/961-49/12).

References

  1. Baraton MI, Ouintard P (1982) Infrared evidence of order-disorder phase transitions (γ → δα) in Al2O3. J Mol Struct 79:337–340.  https://doi.org/10.1016/0022-2860(82)85079-5 CrossRefGoogle Scholar
  2. Bokhimi X, Toledo-Antonio JA, Guzmán-Castillo ML, Hernández-Beltrán F (2001) Relationship between crystallite size and bond lengths in boehmite. J Solid State Chem 159:32–40.  https://doi.org/10.1006/jssc.2001.9124 CrossRefGoogle Scholar
  3. Cava S, Tebcherani SM, Souza IA, Pianaro SA, Paskocimas CA, Longo E, Varela JA (2007) Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys 103:394–399.  https://doi.org/10.1016/j.matchemphys.2007.02.046 CrossRefGoogle Scholar
  4. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Pearson/Prentice Hall, Upper Saddle RiverGoogle Scholar
  5. Goebbert DJ, Garand E, Wende T, Bergmann R, Meijer G, Asmis KR, Neumark DM (2009) Infrared Spectroscopy of the microhydrated nitrate ions NO3 (H2O)1−6. J Phys Chem A 113:7584–7592.  https://doi.org/10.1021/jp9017103 CrossRefPubMedGoogle Scholar
  6. Kresse G (2005) Structure of the ultrathin aluminum oxide film on NiAl(110). Science 308:1440–1442.  https://doi.org/10.1126/science.1107783 CrossRefPubMedGoogle Scholar
  7. Krokidis X, Raybaud P, Gobichon A-E, Rebours B, Euzen P, Toulhoat H (2001) Theoretical study of the dehydration process of boehmite to γ-alumina. J Phys Chem B 105:5121–5130.  https://doi.org/10.1021/jp0038310 CrossRefGoogle Scholar
  8. Lamouri S, Hamidouche M, Bouaouadja N, Belhouchet H, Garnier V, Fantozzi G, Trelkat JF (2017) Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Bol Soc Esp Cerámica Vidr 56:47–54.  https://doi.org/10.1016/j.bsecv.2016.10.001 CrossRefGoogle Scholar
  9. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012.  https://doi.org/10.1111/j.1151-2916.1998.tb02581.x CrossRefGoogle Scholar
  10. Myronyuk IF, Mandzyuk VI, Sachko VM, Gun’ko VM (2016) Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate. Nanoscale Res Lett.  https://doi.org/10.1186/s11671-016-1366-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Noguchi T, Matsui K, Islam NM, Hakuta Y, Hayashi H (2008) Rapid synthesis of γ-Al2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J Supercrit Fluids 46:129–136.  https://doi.org/10.1016/j.supflu.2008.04.011 CrossRefGoogle Scholar
  12. Okada K, Nagashima T, Kameshima Y, Yasumori A (2003) Effect of crystallite size of boehmite on sinterability of alumina ceramics. Ceram Int 29:533–537.  https://doi.org/10.1016/S0272-8842(02)00198-0 CrossRefGoogle Scholar
  13. Rinaldi R, Fujiwara FY, Schuchardt U (2006) Structural, morphological and acidic changes of nanocrystalline aluminas caused by a controlled humidity atmosphere. Appl Catal Gen 315:44–51.  https://doi.org/10.1016/j.apcata.2006.08.032 CrossRefGoogle Scholar
  14. Sathyaseelan B, Baskaran I, Sivakumar K (2013) Phase transition behavior of nanocrystalline Al2O3 powders. Soft Nanosci Lett 03:69–74.  https://doi.org/10.4236/snl.2013.34012 CrossRefGoogle Scholar
  15. Simões PN, Pedroso LM, Portugal AA, Campos JL (1998) Study of the decomposition of phase stabilized ammonium nitrate (PSAN) by simultaneous thermal analysis: determination of kinetic parameters. Thermochim Acta 319:55–65.  https://doi.org/10.1016/S0040-6031(98)00386-4 CrossRefGoogle Scholar
  16. Smith SJ, Amin S, Woodfield BF, Boerio-Goates J, Campbell BJ (2013) Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent-deficient environment. Inorg Chem 52:4411–4423.  https://doi.org/10.1021/ic302593f CrossRefPubMedGoogle Scholar
  17. Smith SJ, Huang B, Liu S, Liu Q, Olsen RE, Boerio-Goates J, Woodfield BF (2015) Synthesis of metal oxide nanoparticles via a robust “solvent-deficient” method. Nanoscale 7:144–156.  https://doi.org/10.1039/C4NR04964K CrossRefPubMedGoogle Scholar
  18. Tatykaev BB, Burkitbayev MM, Uralbekov BM, Urakaev FK (2014) Mechanochemical synthesis of silver chloride nanoparticles by a dilution method in the system NH4 Cl–AgNO3–NH4NO3. Acta Phys Pol A 126:1044–1048.  https://doi.org/10.12693/APhysPolA.126.1044 CrossRefGoogle Scholar
  19. Trueba M, Trasatti SP (2005) γ-alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 2005:3393–3403.  https://doi.org/10.1002/ejic.200500348 CrossRefGoogle Scholar
  20. Woodfield BF, Liu S, Boerio-Goates J, Liu Q, Smith SJ (2012) Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys. US Patent, US11707840, 16 Feb 2007Google Scholar
  21. Yu J, Bai H, Wang J, Li Z, Jiao C, Liu Q, Zhang M, Liu L (2013) Synthesis of alumina nano sheets via supercritical fluid technology with high uranyl adsorptive capacity. New J Chem 37:366–372.  https://doi.org/10.1039/C2NJ40514H CrossRefGoogle Scholar
  22. Zapp K-H, Wostbrock K-H, Schäfer M, Sato K, Seiter H, Zwick W, Creutziger R, Leiter H (2000) Ammonium Compounds. In: Wiley-VCH Verlag GmbH & Co. KGaA (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  23. Zhang Z, Pinnavaia TJ (2002) Mesostructured γ-Al2O3 with a lathlike framework morphology. J Am Chem Soc 124:12294–12301.  https://doi.org/10.1021/ja0208299 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Empa Materials Science and TechnologyDubendorfSwitzerland
  2. 2.Faculty of Natural Sciences and MathematicsUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  3. 3.Institute for Materials Chemistry and Engineering, Interdisciplinary Graduate School of Engineering ScienceKyushu UniversityKasugaJapan
  4. 4.Technische Universität DarmstadtDarmstadtGermany
  5. 5.Alumina Ltd.ZvornikBosnia and Herzegovina

Personalised recommendations