Chemical Papers

, Volume 73, Issue 2, pp 435–445 | Cite as

Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts

  • Yasser M. A. MohamedEmail author
  • Hossam A. El NazerEmail author
  • Eirik Johansson Solum
Original Paper


Herein we report the use of Ag/TiO2 and Pt/TiO2 nanocatalysts to promote the synthesis of a series of silyl-protected and functionalized propargylamine derivatives through alkyne–amine–aldehyde (A3) coupling under microwave condition using water as solvent in short reaction times with high yielding production. A comparative study between the two catalysts was also demonstrated to prove that Pt/TiO2 nanocomposite has higher potential effect for propargylamines synthesis more than Ag/TiO2. The main features of the investigated method for propargylamines synthesis were easy handling, low catalyst loading as well as the feasibility of catalyst recyclability. The prepared compounds are potentially beneficial with possible pharmacological and biological properties, which that could be used in several disciplines including medicinal and agricultural applications.

Graphical abstract


Metal-doped TiO2 Nanocatalysis Propargylamine Multicomponent reaction Recyclability 



The authors are grateful to the National Research Center (Egypt) and NORD University (Norway) for providing the facilities.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Abbiati G, Rossi E (2014) Silver and gold-catalyzed multicomponent reactions. Beilstein J Org Chem 10:481–513CrossRefGoogle Scholar
  2. Aguilar D, Contel M, Urriolabeitia EP (2010) Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles. Chem Eur J 16(30):9287–9296CrossRefGoogle Scholar
  3. Al-Qaisi JA, Alhussainy TM, Qinna NA, Matalka KZ, Al-Kaissi EN, Muhi-Eldeen ZA (2014) Synthesis and pharmacological evaluation of aminoacetylenic isoindoline-1,3-dione derivatives as anti-inflammatory agents. Arab J Chem 7(6):1024–1030CrossRefGoogle Scholar
  4. Attia YA, Vázquez CV, Mohamed YMA (2017) Facile production of vitamin B3 and other heterocyclic carboxylic acids using an efficient Ag/ZnO/graphene-Si hybrid nanocatalyst. Res Chem Intermed 43(1):203–218CrossRefGoogle Scholar
  5. Bagheri S, Julkapli NM, Abd Hamid SB (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:727496CrossRefGoogle Scholar
  6. Bellardita M, El Nazer HA, Loddo V, Parrino F, Venezia AM, Palmisano L (2017) Photoactivity under visible light of metal loaded TiO2 catalysts prepared by low frequency ultrasound treatment. Catal Today 284:92–99CrossRefGoogle Scholar
  7. Bieber LW, Da Silva MF (2004) Mild and efficient synthesis of propargylamines by copper-catalyzed Mannich reaction. Tetrahedron Lett 45(45):8281–8283CrossRefGoogle Scholar
  8. Borah SJ, Das DK (2016) Modified Montmorillonite clay stabilized silver nanoparticles: an active heterogeneous catalytic system for the synthesis of propargylamines. Catal Lett 146(3):656–665CrossRefGoogle Scholar
  9. Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Efficient one-pot synthesis of propargylamines catalysed by gold nanocrystals stabilized on montmorillonite. Catal Sci Technol 4:4001–4009CrossRefGoogle Scholar
  10. Cardoso FSP, Abboud K, Aponick A (2013) Design, preparation, and implementation of an imidazole-based chiral biaryl P, N-ligand for asymmetric Catalysis. J Am Chem Soc 135(39):14548–14551CrossRefGoogle Scholar
  11. Fischer C, Carreira EM (2004) MgI2 as an additive in Ir(I)-catalyzed addition of silylacetylenes to imines: expeditious synthesis of propargylic amines. Synthesis 9:1497–1503Google Scholar
  12. Gao J, Song Q-W, He L-N, Yang Z-Z, Dou X-Y (2012) Efficient iron(III)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chem Commun 48(14):2024–2026CrossRefGoogle Scholar
  13. GhavamiNejad A, Kalantarifard A, Yang GS, Kim CS (2016) In-situ immobilization of silver nanoparticles on ZSM-5 type zeolite by catechol redox chemistry, a green catalyst for A3-coupling reaction. Microporous Mesoporous Mater 225:296–302CrossRefGoogle Scholar
  14. Gommermann N, Koradin C, Polborn K, Knochel P (2003) Enantioselective, copper(I)-catalyzed three-component reaction for the preparation of propargylamines. Angew Chem Int Ed 42(46):5763–5766CrossRefGoogle Scholar
  15. Haji M (2016) Multicomponent reactions: a simple and efficient route to heterocyclic phosphonates. Beilstein J Org Chem 12:1269–1301CrossRefGoogle Scholar
  16. Jeon H-B, Lee Y, Qiao C, Huang H, Sayre LM (2003) Inhibition of bovine plasma amine oxidase by 1,4-diamino-2-butenes and -2-butynes. Bioorg Med Chem 11(21):4631–4641CrossRefGoogle Scholar
  17. Jokubaityte S et al (1980) Synthesis and properties of acetylene derivatives from phenoxypropargyl. Lietuvos TSR Mokslu Akademijos Darbai Serija B: Chemija Technika, Fizine Geografija 1:35–42Google Scholar
  18. Kano T, Kobayashi R, Maruoka K (2016) Synthesis of N-Boc-propargylic and allylic Amines by reaction of organomagnesium reagents with N-Boc-aminals and their oxidation to N-Boc-ketimines. Org Lett 18(2):276–279CrossRefGoogle Scholar
  19. Kashid VS, Balakrishna MS (2018) Microwave-assisted copper(I) catalyzed A3-coupling reaction: reactivity, substrate scope and the structural characterization of two coupling products. Catal Commun 103:78–82CrossRefGoogle Scholar
  20. Li Z, Li C-J (2004) CuBr-catalyzed efficient alkynylation of sp3 C–H bonds adjacent to a nitrogen Atom. J Am Chem Soc 126(38):11810–11811CrossRefGoogle Scholar
  21. Lo VK-Y, Liu Y, Wong M-K, Che C-M (2006) Gold(III) Salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org Lett 8(8):1529–1532CrossRefGoogle Scholar
  22. Loukopoulos E, Kallitsakis M, Tsoureas N, Abdul-Sada A, Chilton NF, Lykakis NI, Kostakis GE (2017) Cu(II) coordination polymers as vehicles in the A3 coupling. Inorg Chem 56(9):4898–4910CrossRefGoogle Scholar
  23. Lu Y, Johnstone TC, Arndtsen BA (2009) Hydrogen-bonding asymmetric metal catalysis with α-amino acids: a simple and tunable approach to high enantioinduction. J Am Chem Soc 131(32):11284–11285CrossRefGoogle Scholar
  24. Menon RS, Findlay AD, Bissember AC, Banwell MG (2009) The Au(I)-catalyzed intramolecular hydroarylation of terminal alkynes under mild conditions: application to the synthesis of 2H-chromenes, coumarins, benzofurans, and dihydroquinolines. J Org Chem 74(22):8901–8903CrossRefGoogle Scholar
  25. Merino P, Anoro S, Castillo E, Merchan F, Tejero T (1996) Direct vinylation and ethynylation of nitrones. stereodivergent synthesis of allyl and propargyl amines. Tetrahedron Asymmetry 7(7):1887–1890CrossRefGoogle Scholar
  26. Meyet CE, Pierce CJ, Larsen CH (2012) A single Cu(II) catalyst for the three-component coupling of diverse nitrogen sources with aldehydes and alkynes. Org Lett 14(4):964–967CrossRefGoogle Scholar
  27. Mohamed YMA, Hansen TV (2013) Z-Stereoselective semi-reduction of alkynes: modification of the Boland protocol. Tetrahedron 69(19):3872–3877CrossRefGoogle Scholar
  28. Mohamed YMA, Solum EJ (2017) An efficient stereoselective synthesis of a sulfur-bridged analogue of bosseopentaenoic acid as a potential antioxidant agent. Arkivoc 2017:10–19CrossRefGoogle Scholar
  29. Nguyen LHT, Nguyen T, Nguyen L, Doan TLH, Tran PH (2017) A new superacid hafnium-based metal-organic framework as a highly active heterogeneous catalyst for the synthesis of benzoxazoles under solvent-free conditions. Catal Sci Technol 7(19):4346–4350CrossRefGoogle Scholar
  30. Oi EL, Choo M-Y, Lee HV, Ong HC, Abd Hamid SB, Juan JC (2016) Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv 6(110):108741–108754CrossRefGoogle Scholar
  31. Okamura T, Asano K, Matsubara S (2010) Effects of a flexible alkyl chain on an imidazole ligand for copper-catalyzed mannich reactions of terminal alkynes. Synlett 20:3053–3056Google Scholar
  32. Oldfield V, Keating GM, Perry CM (2007) Rasagiline a review of its use in the management of Parkinson’s disease. Drugs 67(12):1725–1747CrossRefGoogle Scholar
  33. Panagiotopoulou P, Karamerou EE, Kondarides DI (2013) Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catal Today 209:91–98CrossRefGoogle Scholar
  34. Petroff JT, Nguyen AH, Porter AJ, Morales FD, Kennedy MP, Weinstein D, El Nazer H, McCulla RD (2017) Enhanced photocatalytic dehalogenation of aryl halides by combined poly-p-phenylene (PPP) and TiO2 photocatalysts. J Photochem Photobiol A 335:149–154CrossRefGoogle Scholar
  35. Qi R, Wang X-N, DeKorver KA, Tang Y, Wang C-C, Li Q, Li H, Lv M-C, Rodriques KE, Basha A, Summers JB, Brooks DW (1988) Addition of aryllithium compounds to oxime ethers. Tetrahedron Lett 29(28):3455–3458CrossRefGoogle Scholar
  36. Riederer P, Lachenmayer L (2003) Selegiline’s neuroprotective capacity revisited. J Neural Transmission 110(11):1273–1278CrossRefGoogle Scholar
  37. Sakai N, Kanada R, Hirasawa M, Konakahara T (2005) Facile and convenient synthesis of functionalized propargylic alcohols and amines: an InBr 3-Et3 N reagent system promotes the alkynylation of aldehydes and N, O- or N, S-acetals. Tetrahedron 61(39):9298–9304CrossRefGoogle Scholar
  38. Sarode PB, Bahekar SP, Chandak HS (2016) Zn(OTf)2-mediated expeditious and solvent-Free synthesis of propargylamines via C–H activation of phenylacetylene. Synlett 27(15):2209–2212CrossRefGoogle Scholar
  39. Schmickler W, Santos E (2010) Interfacial electrochemistry, 2nd edn. Springer-Verlag, Berlin Heidelberg, pp 9–18CrossRefGoogle Scholar
  40. Shah AP, Sharma AS, Jain S, Shimpi NG (2018) Microwave assisted one pot three component synthesis of propargylamine, tetra substituted propargylamine and pyrrolo[1,2-a]quinolines using CuNPs@ZnO–PTh as a heterogeneous catalyst. New J Chem 42:8724–8737CrossRefGoogle Scholar
  41. Sharma N, Sharma UK, Mishra NM, Van der Eyckena EV (2014) Copper-catalyzed diversity-oriented three- and five-component synthesis of mono- and dipropargylic amines via coupling of alkynes, α-amino esters and aldehydes. Adv Synth Catal 356(5):1029–1037CrossRefGoogle Scholar
  42. Shi J, Ai H, Chen J, Cui H, Yang S, Li S, Fu M (2014) Nitrogen doped titania plates with dominant 0 0 1 facets: microstructure and property evolution, and their photocatalytic activities. J Mol Catal A 395:420–427CrossRefGoogle Scholar
  43. Trivedi M, Singh G (2015) Silver(I) complexes as efficient source for silver oxide nanoparticles with catalytic activity in A3 coupling reactions. Inorg Chim Acta 438:255–263CrossRefGoogle Scholar
  44. Vessally E, Hosseinian A, Edjlali L, Bekhradnia A, Esrafili MD (2016) New route to 1,4-oxazepane and 1,4-diazepane derivatives: synthesis from N-propargylamines. RSC Adv 6(102):99781–99793CrossRefGoogle Scholar
  45. Wei C, Li Z, Li C-J (2003) The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. Org Lett 5(23):4473–4475CrossRefGoogle Scholar
  46. Wender PA (2014) Toward the ideal synthesis and molecular function through synthesis-informed design. Nat Prod Rep 31(4):433–440CrossRefGoogle Scholar
  47. Xu X, Li X (2009) Copper/Diethyl azodicarboxylate mediated regioselective alkynylation of unactivated aliphatic tertiary methylamine with terminal alkyne. Org Lett 11(4):1027–1029CrossRefGoogle Scholar
  48. Xu Z, Yu X, Feng X, Bao M (2011) Propargylamine synthesis by copper-catalyzed oxidative coupling of alkynes and tertiary amine N-oxides. J Org Chem 76(16):6901–6905CrossRefGoogle Scholar
  49. Yi WT, Yan CY, Yan P, Li FQ (2014) A new perspective for effect of S and Cu on the photocatalytic activity of S, Cu-codoped nano-TiO2 under visible light irradiation. J Sol-gel Sci Technol 69(2):386–396CrossRefGoogle Scholar
  50. Zani L, Alesi S, Cozzi PG, Bolm C (2006) Dimethylzinc-mediated alkynylation of imines. J Org Chem 71(4):1558–1562CrossRefGoogle Scholar
  51. Zhang H, Zhang P, Jiang M, Yang H, Fu H (2017) Merging photoredox with copper catalysis: decarboxylative alkynylation of α-amino acid derivatives. Org Lett 19(5):1016–1019CrossRefGoogle Scholar
  52. Zhao C, Seidel D (2015) Enantioselective A3 reactions of secondary amines with a Cu(I)/acid-thiourea catalyst combination. J Am Chem Soc 137(14):4650–4653CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Photochemistry DepartmentNational Research CenterGizaEgypt
  2. 2.Faculty of Health SciencesNORD UniversityNamsosNorway

Personalised recommendations