Advertisement

Chemical Papers

, Volume 73, Issue 2, pp 355–364 | Cite as

Synthesis and biological evaluation of 2,4-disubstituted thiazole amide derivatives as anticancer agent

  • Zhi-Hua Zhang
  • Hong-Mei Wu
  • Sai-Nan Deng
  • Rui-Xia Chai
  • Muriira Cyrus Mwenda
  • Yuan-Yuan Peng
  • Dong CaiEmail author
  • Yu ChenEmail author
Original Paper
  • 34 Downloads

Abstract

A series of novel 2,4-disubstituted thiazole amide derivatives were synthesized, and their antiproliferative activities were tested. Some of these compounds displayed good antiproliferative activity, especially for HT29 cell. Among these compounds, compound 5b inhibits A549, HeLa, HT29 and Karpas299 cells with IC50 values of 8.64, 6.05, 0.63 and 13.87 μM, respectively. The western blot analysis and docking study provide important clues for further optimization of compound 5b as a potential c-Met inhibitor.

Keywords

Thiazole derivatives Synthesis Anticancer activity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21601075), the Natural Science Foundation of Liaoning Province (Nos. 2015020249, 20170540396) and General Research Projects of Liaoning Provincial Department of Education (No. JQL201715410).

Supplementary material

11696_2018_587_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1473 kb)

References

  1. Alam MS, Liu L, Lee YE, Lee DU (2011) Synthesis, antibacterial activity and quantum-chemical studies of novel 2-arylidenehydrazinyl-4-arylthiazole analogues. Chem Pharm Bull (Tokyo) 59:568–573.  https://doi.org/10.1248/cpb.59.568 CrossRefGoogle Scholar
  2. Bhat S, Shim JS, Liu JO (2013) Tricyclic thiazoles are a new class of angiogenesis inhibitors. Bioorg Med Chem Lett 23:2733–2737.  https://doi.org/10.1016/j.bmcl.2013.02.067 CrossRefGoogle Scholar
  3. Chang HH, Song Z, Wisner L, Tripp T, Gokhale V, Meuillet EJ (2012) Identification of a novel class of anti-inflammatory compounds with anti-tumor activity in colorectal and lung cancers. Invest New Drugs 30:1865–1877.  https://doi.org/10.1007/s10637-011-9748-8 CrossRefGoogle Scholar
  4. Cui JJ, Trandubé M, Shen H, Nambu M, Kung PP, Pairish M, Jia L, Meng J, Funk L, Botrous I (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363.  https://doi.org/10.1021/jm2007613 CrossRefGoogle Scholar
  5. Devarajan R, Arunachalam V, Jayakumar E, Selvi P (1993) Water-soluble polymers. I. Synthesis of N-succinimido (N) thiocarbonyl acrylamide and its polymerization: grafting of this monomer and acrylamide onto poly (vinyl alcohol). J Appl Polym Sci 48:921–930.  https://doi.org/10.1002/app.1993.070480516 CrossRefGoogle Scholar
  6. El-Messery SM, Hassan GS, Al-Omary FA, El-Subbagh HI (2012) Substituted thiazoles VI. Synthesis and antitumor activity of new 2-acetamido- and 2 or 3-propanamido-thiazole analogs. Eur J Med Chem 54:615–625.  https://doi.org/10.1016/j.ejmech.2012.06.013 CrossRefGoogle Scholar
  7. Gennäs GB, Mologni L, Ahmed S, Rajaratnam M, Marin O, Lindholm N, Viltadi M, Gambacorti-Passerini C, Scapozza L, Yli-Kauhaluoma J (2011) Design, synthesis, and biological activity of urea derivatives as anaplastic lymphoma kinase inhibitors. ChemMedChem 6:1680–1692.  https://doi.org/10.1002/cmdc.201100168 CrossRefGoogle Scholar
  8. Hassan GS, El-Messery SM, Al-Omary FAM, El-Subbagh HI (2012) Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl-1,3-thiazole analogs. Bioorg Med Chem Lett 22:6318–6323.  https://doi.org/10.1016/j.bmcl.2012.08.095 CrossRefGoogle Scholar
  9. Huang Q, Johnson TW, Bailey S, Brooun A, Bunker KD, Burke BJ, Collins MR, Cook AS, Cui JJ, Dack KN, Deal JG, Deng Y-L, Dinh D, Engstrom LD, He M, Hoffman J, Hoffman RL, Johnson PS, Kania RS, Lam H, Lam JL, Le PT, Li Q, Lingardo L, Liu W, Lu MW, McTigue M, Palmer CL, Richardson PF, Sach NW, Shen H, Smeal T, Smith GL, Stewart AE, Timofeevski S, Tsaparikos K, Wang H, Zhu H, Zhu J, Zou HY, Edwards MP (2014) Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. J Med Chem 57:1170–1187.  https://doi.org/10.1021/jm401805h CrossRefGoogle Scholar
  10. Li J, Zheng T-C, Jin Y, Xu J-G, Yu J-G, Lv Y-W (2018) Synthesis, molecular docking and biological evaluation of quinolone derivatives as novel anticancer agents. Chem Pharm Bull 66:55–60.  https://doi.org/10.1248/cpb.c17-00035 CrossRefGoogle Scholar
  11. Morales-Bonilla P, Pérez-Cardeña A, Quintero-Mármol E, Arias-Téllez JL, Mena-Rejón GJ (2006) Preparation, antimicrobial activity, and toxicity of 2-amino-4-arylthiazole derivatives. Heteroat Chem 17:254–260.  https://doi.org/10.1002/hc.20182 CrossRefGoogle Scholar
  12. Parikh PK, Ghate MD (2017) Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur J Med Chem 143:1103–1138.  https://doi.org/10.1016/j.ejmech.2017.08.044 CrossRefGoogle Scholar
  13. Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, Burke BJ, Deng Y-L, Liu W, Dardaei L, Frias RL, Schultz KR, Logan J, James LP, Smeal T, Timofeevski S, Katayama R, Iafrate AJ, Le L, McTigue M, Getz G, Johnson TW, Engelman JA (2016) Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. New Engl J Med 374:54–61.  https://doi.org/10.1056/NEJMoa1508887 CrossRefGoogle Scholar
  14. Siddiqui HL, Zia-Ur-Rehman M, Ahmad N, Weaver GW, Lucas PD (2007) Synthesis and antibacterial activity of bis[2-amino-4-phenyl-5-thiazolyl] disulfides. Chem Pharm Bull (Tokyo) 55:1014–1017.  https://doi.org/10.1248/cpb.55.1014 CrossRefGoogle Scholar
  15. Smith B, Chang HH, Medda F, Gokhale V, Dietrich J, Davis A, Meuillet EJ, Hulme C (2012) Synthesis and biological activity of 2-aminothiazoles as novel inhibitors of PGE2 production in cells. Bioorg Med Chem Lett 22:3567.  https://doi.org/10.1016/j.bmcl.2012.03.013 CrossRefGoogle Scholar
  16. Solomon B (2014) Refining the toxicity profile of Crizotinib. J Thorac Oncol 9:1596–1597.  https://doi.org/10.1097/JTO.0000000000000375 CrossRefGoogle Scholar
  17. Tu C-H, Lin W-H, Peng Y-H, Hsu T, Wu J-S, Chang C-Y, Lu C-T, Lyu P-C, Shih C, Jiaang W-T, Wu S-Y (2016) Pyrazolylamine derivatives reveal the conformational switching between type i and type ii binding modes of anaplastic lymphoma kinase (ALK). J Med Chem 59:3906–3919.  https://doi.org/10.1021/acs.jmedchem.6b00106 CrossRefGoogle Scholar
  18. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J (2014) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nauure 487:505–509.  https://doi.org/10.1038/nature11249 Google Scholar
  19. Zhou L, Yang Q, Wang Y, Hu Y, Luo X, Bai D, Li S (2008) Synthesis and biological evaluation of novel isopropanolamine derivatives as non-peptide human immunodeficiency virus protease inhibitors. Chem Pharm Bull (Tokyo) 56:1147–1152.  https://doi.org/10.1248/cpb.56.1147 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Zhi-Hua Zhang
    • 1
  • Hong-Mei Wu
    • 1
  • Sai-Nan Deng
    • 2
  • Rui-Xia Chai
    • 2
  • Muriira Cyrus Mwenda
    • 2
  • Yuan-Yuan Peng
    • 2
  • Dong Cai
    • 3
    Email author
  • Yu Chen
    • 4
    Email author
  1. 1.School of Chemical and Environmental EngineeringLiaoning University of TechnologyJinzhouChina
  2. 2.College of PharmacyJinzhou Medical UniversityJinzhouChina
  3. 3.College of Basic ScienceJinzhou Medical UniversityJinzhouChina
  4. 4.School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations