Advertisement

A new approach about the intercalation of hexadecyltrimethylammonium into halloysite: preparation, characterization, and mechanism

  • Khouira Mehdi
  • Souhila Bendenia
  • Gisele Laure Lecomte-Nana
  • Isabelle Batonneau-Gener
  • Fabrice Rossignol
  • Kheira Marouf-Khelifa
  • Amine Khelifa
Original Paper
  • 18 Downloads

Abstract

Three organoclays were prepared by mixing an Algerian halloysite with a solution of hexadecyltrimethylammonium bromide (HDTMA-Br) equivalent to six times the cation-exchange capacity of our clay. Unlike a majority of studies which were focused on the initial concentration of the intercalating agent, this paper investigates the influence of the reaction time for a given initial concentration. Three intercalation times were examined: 2, 7, and 14 days. The resulting organoclays were analyzed by XRD, FTIR, TG–DTA, TEM, and N2 adsorption–desorption. The intercalation of HDTMA+ cations begins by a latency period up to 2 days, during which these cations interact with the external surface of halloysite. From 2 to 7 days, they migrate into the interlayer spaces, leading to an expansion of the basal distance from 7.3 to 26.0 Å. Between 7 and 14 days, the expansion remains unchanged for an intercalation rate around 42%. FTIR analysis proved that the surfactant interacts with the inner surface hydroxyl groups. From 200 °C, thermal analysis highlighted a succession of stages linked to the removal of HDTMA+. The TEM images showed a decrease in the outer diameter of the intercalated nanotubes with an enlargement of lumen diameter up to 20 nm. The arrangement of HDTMA+ species into interlayer spaces reflected a paraffin-type monolayer configuration. Knowing that the intercalation of organic compounds into the clay minerals changes their behavior from hydrophilic to hydrophobic, a nanotubular organohalloysite with a basal expansion of 26.0 Å could be a highly effective adsorbent for wastewater decontamination.

Keywords

Halloysite Intercalation Hexadecyltrimethylammonium bromide Characterization XRD analysis Mechanism 

References

  1. Abbas A, Sallam AS, Usman AA, Al-Wabel MI (2017) Organoclay-based nanoparticles from montmorillonite and natural clay deposits: synthesis, characteristics, and application for MTBE removal. Appl Clay Sci 142:21–29.  https://doi.org/10.1016/j.clay.2016.11.028 CrossRefGoogle Scholar
  2. Abdullayev E, Lvov Y (2016) Halloysite for controllable loading and release. In: Yuan P, Thill A, Bergaya F (eds) Nanosized tubular clay minerals: halloysite and imogolite. Chapter 22. Elsevier, AmsterdamGoogle Scholar
  3. Belkassa K, Bessaha F, Marouf-Khelifa K, Batonneau-Gener I, Comparot JD, Khelifa A (2013) Physicochemical and adsorptive properties of a heat-treated and acid leached Algerian halloysite. Colloids Surf A 421:26–33.  https://doi.org/10.1016/j.colsurfa.2012.12.048 CrossRefGoogle Scholar
  4. Bessaha F, Marouf-Khelifa K, Batonneau-Gener I, Khelifa A (2016) Characterization and application of heat-treated and acid-leached halloysites in the removal of malachite green: adsorption, desorption, and regeneration studies. Desalin Water Treat 57:14609–14621.  https://doi.org/10.1080/19443994.2015.1063090 CrossRefGoogle Scholar
  5. Campbell RA, Parker SR, Day JPR, Bain CD (2004) External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylinder. Langmuir 20:8740–8753.  https://doi.org/10.1021/la048680x CrossRefPubMedGoogle Scholar
  6. Chmielarz L, Kowalczyk A, Wojciechowska M, Boroń P, Dudek B, Michalik M (2014) Montmorillonite intercalated with SiO2, SiO2–Al2O3 or SiO2–TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chem Pap 68:1219–1227.  https://doi.org/10.2478/s11696-013-0463-0 CrossRefGoogle Scholar
  7. Frost RL, Kristof J, Horvath E, Kloprogge JT (2000) Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K. J Colloid Interface Sci 226:318–327.  https://doi.org/10.1006/jcis.2000.6807 CrossRefGoogle Scholar
  8. Gammoudi S, Frini-Srasra N, Srasra E (2012) Influence of exchangeable cation of smectite on HDTMA adsorption: equilibrium, kinetic and thermodynamic studies. Appl Clay Sci 69:99–107.  https://doi.org/10.1016/j.clay.2011.11.011 CrossRefGoogle Scholar
  9. Gładysz-Płaska A, Majdan M, Pikus S, Sternik D (2012) Simultaneous adsorption of chromium (VI) and phenol on natural red clay modified by HDTMA. Chem Eng J 179:140–150.  https://doi.org/10.1016/j.cej.2011.10.071 CrossRefGoogle Scholar
  10. Gomdje VH, Rahman AN, Wahabou A (2017) Synthesis of organoclay and its applications in electrochemical detection of paracetamol. Der Chem Sin 8:206–217Google Scholar
  11. Guessoum M, Nekkaa S, Fenouillot-Rimlinger F, Haddaoui N (2012) Effects of kaolin surface treatments on the thermomechanical properties and on the degradation of polypropylene. Int J Polym Sci .  https://doi.org/10.1155/2012/549154 (Article ID 549154) CrossRefGoogle Scholar
  12. He H, Ding Z, Zhu J, Yuan P, Xu Y, Yang D, Frost R (2005a) Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner 53:287–293.  https://doi.org/10.1346/CCMN.2005.0530308 CrossRefGoogle Scholar
  13. He H, Galy J, Gerard JF (2005b) Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids. J Phys Chem B 109:13301–13306.  https://doi.org/10.1021/jp0517495 CrossRefPubMedGoogle Scholar
  14. Hundáková M, Tokarský J, Valášková M, Slobodian P, Pazdziora E, Kimmer D (2015) Structure and antibacterial properties of polyethylene/organo-vermiculite composites. Solid State Sci 48:197–204.  https://doi.org/10.1016/j.solidstatesciences.2015.08.011 CrossRefGoogle Scholar
  15. Kannan C, Sundaram T, Palvannan T (2008) Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. J Hazard Mater 157:137–145.  https://doi.org/10.1016/j.jhazmat.2007.12.116 CrossRefPubMedGoogle Scholar
  16. Lagaly G (1986) Smectitic clays as ionic macromolecules. In: Wilson AD, Prosser HJ (eds) Developments of ionic polymers, vol 2. Elsevier, London, pp 77–140CrossRefGoogle Scholar
  17. Lagaly G, Ogawa M, Dékány I (2013) Clay mineral–organic interactions. In: Bergaya F, Lagaly G (eds) Handbook of clay science: fundamentals. Chapter 10.3. Elsevier, Amsterdam, p 435CrossRefGoogle Scholar
  18. Lapides I, Borisover M, Yariv S (2011) Thermal analysis of hexadecyltrimethylammonium–montmorillonites. J Therm Anal Calorim 105:921–929.  https://doi.org/10.1007/s10973-011-1304-4 CrossRefGoogle Scholar
  19. Li Z, Gallus L (2005) Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion, sorption cation, desorption, and FTIR. Colloids Surf A 264:61–67.  https://doi.org/10.1016/j.colsurfa.2005.05.016 CrossRefGoogle Scholar
  20. Liang Y, Ding H, Wang Y, Liang N, Wang G (2013) Intercalation of cetyl trimethylammonium ion into sericite in the solvent of dimethyl sulfoxide. Appl Clay Sci 74(2013):109–114.  https://doi.org/10.1016/j.clay.2013.01.009 CrossRefGoogle Scholar
  21. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10.  https://doi.org/10.1016/S0924-2031(02)00065-6 CrossRefGoogle Scholar
  22. Madejová J, Pentrák M, Pálková H, Komadel P (2010) IR spectroscopy of clay minerals and clay nanocomposites Spectrosc. Prop Inorg Organomet Compd 41:22–71.  https://doi.org/10.1039/9781849730853-00022 CrossRefGoogle Scholar
  23. Mahrez N, Bendenia S, Marouf-Khelifa K, Batonneau-Gener I, Khelifa A (2015) Improving of the adsorption capacity of halloysite nanotubes intercalated with dimethyl sulfoxide. Compos Interfaces 22:403–417.  https://doi.org/10.1080/09276440.2015.1036581 CrossRefGoogle Scholar
  24. Manikandan D, Divakar D, Sivakumar T (2007) Utilization of clay minerals for developing Pt nanoparticles and their catalytic activity in the selective hydrogenation of cinnamaldehyde. Catal Commun 8:1781–1786.  https://doi.org/10.1016/j.catcom.2007.02.007 CrossRefGoogle Scholar
  25. Mellouk S, Cherifi S, Sassi M, Marouf-Khelifa K, Bengueddach A, Schott J, Khelifa A (2009) Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions. Appl Clay Sci 44:230–236.  https://doi.org/10.1016/j.clay.2009.02.008 CrossRefGoogle Scholar
  26. Naranjo PM, Molina J, Sham EL, Farfán Torres EM (2015) Synthesis and characterization of HDTMA-organoclays: insights into their structural properties. Quim Nova 38:166–171.  https://doi.org/10.5935/0100-4042.20140302 CrossRefGoogle Scholar
  27. Nunes AR, Araújo KO, Moura AO, Prado AS (2018) Magadiite as a support for the controlled release of herbicides. Chem Pap 72:479–486.  https://doi.org/10.1007/s11696-017-0300-y CrossRefGoogle Scholar
  28. Park Y, Ayoko GA, Kristof J, Horváth E, Frost RL (2012) Thermal stability of organoclays with mono-and di-alkyl cationic surfactants. J Therm Anal Calorim 110:1087–1093.  https://doi.org/10.1007/s10973-011-2025-4 CrossRefGoogle Scholar
  29. Pei Y, Wang M, Tian D, Xu X, Yuan L (2015) Synthesis of core–shell SiO2@ MgO with flower like morphology for removal of crystal violet in water. J Colloid Interface Sci 453:194–201.  https://doi.org/10.1016/j.jcis.2015.05.003 CrossRefPubMedGoogle Scholar
  30. Plachá D, Martynková GS, Rümmeli MH (2008) Preparation of organovermiculites using HDTMA: structure and sorptive properties using naphthalene. J Colloid Interface Sci 327:341–347.  https://doi.org/10.1016/j.jcis.2008.08.026 CrossRefPubMedGoogle Scholar
  31. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders & porous solids, principles, methodology and applications. Academic Press, LondonGoogle Scholar
  32. Salazar-Camacho C, Villalobos M, Rivas-Sánchez M, Arenas-Alatorre J, Alcaraz-Cienfuegos J, Gutiérrez-Ruiz ME (2013) Characterization and surface reactivity of natural and synthetic magnetites. Chem Geol 347:233–245.  https://doi.org/10.1016/j.chemgeo.2013.03.017 CrossRefGoogle Scholar
  33. Senoussi H, Osmani H, Courtois C, Bourahli MeH (2016) Mineralogical and chemical characterization of DD3 kaolin from the east of Algeria. Bol Soc Esp Ceram Vidr 55:121–126.  https://doi.org/10.1016/j.bsecv.2015.12.001 CrossRefGoogle Scholar
  34. Shirzad-Siboni M, Khataee A, Hassani A, Karaca S (2015) Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: kinetic and equilibrium studies. C R Chim 18:204–214.  https://doi.org/10.1016/j.crci.2014.06.004 CrossRefGoogle Scholar
  35. Špírková M, Bober P, Kotek J, Stejskal J (2013) Bi-hybrid coatings: polyaniline-montmorillonite filler in organic–inorganic polymer matrix. Chem Pap 67:1020–1027.  https://doi.org/10.2478/s11696-012-0299-z CrossRefGoogle Scholar
  36. Sun Z, Park Y, Zheng S, Ayoko GA, Frost RL (2013) Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: a comparative study. Thermochim Acta 569:151–160.  https://doi.org/10.1016/j.tca.2013.07.022 CrossRefGoogle Scholar
  37. Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6:1017–1022.  https://doi.org/10.1021/cm00043a025 CrossRefGoogle Scholar
  38. Wang L, Chen Z, Wang X, Yan S, Wang J, Fan Y (2011) Preparations of organo-vermiculite with large interlayer space by hot solution and ball milling methods: a comparative study. Appl Clay Sci 51:151–157.  https://doi.org/10.1016/j.clay.2010.11.023 CrossRefGoogle Scholar
  39. Weiss A, Choy JH, Meyer H, Becker HO (1981) Hydrogen reorientation, a primary step of intercalation reactions into kaolinite. In: Proceedings of the international clay conference, Bologna, Pavia, Abstracts 331Google Scholar
  40. Wiewióra A, Brindley GW (1969) Potassium acetate intercalation in kaolinites and its removal: effect of material characteristics. In: Heller L (ed) Proceedings of the international clay conference, Tokyo. Israel University Press, Jerusalem, pp 723–733Google Scholar
  41. Xi Y, Mallavarapu M, Naidu R (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48:92–96.  https://doi.org/10.1016/j.clay.2009.11.047 CrossRefGoogle Scholar
  42. Yah WO, Takahara A, Lvov Y (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859.  https://doi.org/10.1021/ja210258y CrossRefPubMedGoogle Scholar
  43. Yu WH, Ren QQ, Tong DS, Zhou CH, Wang H (2014) Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene. Appl Clay Sci 97–98:222–234.  https://doi.org/10.1016/j.clay.2014.06.007 CrossRefGoogle Scholar
  44. Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751.  https://doi.org/10.1021/jp805657t CrossRefGoogle Scholar
  45. Zaghouane-Boudiaf H, Boutahala M (2011) Preparation and characterization of organo- montmorillonites. Application in adsorption of the 2,4,5-trichlorophenol from aqueous solution. Adv Powder Technol 22:735–740.  https://doi.org/10.1016/j.apt.2010.10.014 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Khouira Mehdi
    • 1
  • Souhila Bendenia
    • 1
  • Gisele Laure Lecomte-Nana
    • 2
  • Isabelle Batonneau-Gener
    • 3
  • Fabrice Rossignol
    • 2
  • Kheira Marouf-Khelifa
    • 1
  • Amine Khelifa
    • 1
  1. 1.Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (S.E.A.2 M.), Département de Génie des ProcédésUniversité de MostaganemMostaganemAlgeria
  2. 2.Laboratoire Science des Procédés Céramiques et de Traitements de Surface, SPCTS (UMR CNRS 7315)Centre Européen de la CéramiqueLimogesFrance
  3. 3.Institut de Chimie des Milieux et Matériaux de Poitiers IC2MP (UMR 7285 CNRS)Université de PoitiersPoitiersFrance

Personalised recommendations