Advertisement

Chemical Papers

, Volume 72, Issue 10, pp 2673–2678 | Cite as

Searching for microalgal species producing extracellular biopolymers

  • Michal Halaj
  • Beata Chválová
  • Vladislav Cepák
  • Jaromír Lukavský
  • Peter Capek
Short Communication
  • 100 Downloads

Abstract

Microalgae have been used in human applications for centuries, but in the mid-twentieth century, an industrial cultivation of some species began. In this study, 17 different microalgal species were screened for the production of extracellular polymeric substances (EPSs). EPS yields (16–1064 mg/L), carbohydrate (1–88%) and protein (0–16%) contents were found to vary greatly. Uronic acids have been identified in most EPSs, indicating their ionic nature. Monosaccharide compositions revealed the heteropolysaccharide type of all EPSs. Monosaccharide compositions revealed a high number of sugar units (6–8) in all EPSs. Besides, hexoses were found as the dominant sugar components in most species. Some EPSs were rich in deoxy-hexoses, i.e. rhamnose or fucose, and some had high pentose content, i.e. xylose or arabinose. In many EPSs partially methylated sugars have been determined. Of the 17 species of microalgae studied, six strains differed significantly in the production of EPSs from others and had a relatively high content of carbohydrates. Screening revealed the following major EPS producers: Chlorosarcinopsis sp. (Lukešová 1996/401), Klebsormidium flaccidum (Lukešová 1997/320), K. flaccidum (Kaštovská 1995/02), Dictyosphaerium chlorelloides (Kováčik 1978/11), Dictyosphaerium cf. tetrachotomum Printz (Fott 1959/1), and Dictyosphaerium cf. tetrachotomum Printz Růžička 1962/50). Dominant producers are selected for cultivation on a larger scale to obtain EPSs for detailed chemical studies and potential biological activities.

Keywords

Microalgae Screening Cultivation Biopolymers Carbohydrates Sugar analysis 

Notes

Acknowledgements

This work was supported by the Slovak Grant Agency VEGA (Grant no. 2/0051/18) and Technology Agency of the Czech Republic (TE 01020080).

References

  1. Allard B, Casadevall E (1990) Carbohydrate composition and characterization of sugars from the green microalga Botryococcus braunii. Phytochemistry 29(6):1875–1878CrossRefGoogle Scholar
  2. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489CrossRefGoogle Scholar
  3. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25(3):743–756CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefGoogle Scholar
  5. Cepák V, Lukavský J (1994) The effect of high irradiances on growth, biosynthetic activities and the ultrastructure of the green alga Botryococcus braunii strain DROOP 1950/807-1. Arch Hydrobiol Suppl Algol Stud 72:115–131Google Scholar
  6. Collins RP, Kalnins K (1967) Keto Acids Produced by Chlamydomonas reinhardti. Can J Microbiol 13(8):995–999CrossRefGoogle Scholar
  7. de Jesus Raposo MF, de Morais AM, de Morais RM (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101(1–2):56–63CrossRefGoogle Scholar
  8. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34(7):1159–1179CrossRefGoogle Scholar
  9. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  10. Englyst HN, Cummings JH (1984) Simplified method for the measurement of total non- starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 109(7):937–942CrossRefGoogle Scholar
  11. Fernandes HL, Tomé MM, Lupi FM, Fialho AM, Sá-Correia I, Novais JM (1989) Biosynthesis of high concentrations of an exopolysaccharide during the cultivation of the microalga Botryococcus braunii. Biotechnol Lett 11(6):433–436CrossRefGoogle Scholar
  12. Friedl T, Rybalka N, Kryvenda A (2012) Phylogeny and systematics of microalgae: an overview. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. Walter de Gruyter GmbH, Berlin, pp 11–37Google Scholar
  13. Guiry MD (2012) How many species of algae are there? J Phycol 48(5):1057–1063CrossRefGoogle Scholar
  14. Halaj M, Paulovičová E, Paulovičová L, Jantová S, Cepák V, Lukavský J, Capek P (2018) Biopolymer of Dictyosphaerium chlorelloides-chemical characterization and biological effects. Int J Biol Macromol 113:1248–1257CrossRefGoogle Scholar
  15. Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42(13):3435–3445CrossRefGoogle Scholar
  16. Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29(5):537–566CrossRefGoogle Scholar
  17. Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym 54(1):33–42CrossRefGoogle Scholar
  18. Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137(4):855–859CrossRefGoogle Scholar
  19. Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7(3):184–192CrossRefGoogle Scholar
  20. Jansson PE, Kenne L, Liedgren H, Lindberg B, Lonngren J (1976) A practical guide to the methylation analysis of carbohydrates. Chem Commun (Stockholm Univ) 8:1–75Google Scholar
  21. Kralovec JA, Metera KL, Kumar JR, Watson LV, Girouard GS, Guan Y, Carr RI, Barrow CJ, Ewart HS (2007) Immunostimulatory principles from Chlorella pyrenoidosa—Part 1: isolation and biological assessment in vitro. Phytomedicine 14(1):57–64CrossRefGoogle Scholar
  22. Kroen WK, Rayburn WR (1984) Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). J Phycol 20(2):253–257CrossRefGoogle Scholar
  23. Lombardi AT, Hidalgo TMR, Vieira AAH (2005) Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 60(4):453–459CrossRefGoogle Scholar
  24. Lupi FM, Fernandes HM, Sá-Correia I, Novais JM (1991) Temperature profiles of cellular growth and exopolysaccharide synthesis by Botryococus braunii Kütz. UC 58. J Appl Phycol 3(1):35–42CrossRefGoogle Scholar
  25. Metzger P, Rager MN, Largeau C (2007) Polyacetals based on polymethylsqualene diols, precursors of algaenan in Botryococcus braunii race B. Org Geochem 38(4):566–581CrossRefGoogle Scholar
  26. Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52(4):639–647CrossRefGoogle Scholar
  27. Norton TA, Melkonian M, Andersen RA, Norton TA, Melkonian M (1996) Algal biodiversity. Phycologia 35(35):308–326CrossRefGoogle Scholar
  28. Nosáľová G, Capek P, Matáková T, Nosáľ S, Flešková D, Jureček Ľ (2012) Antitussive activity of an extracellular Rhodella grisea proteoglycan on the mechanically induced cough reflex. Carbohydr Polym 87(1):752–756CrossRefGoogle Scholar
  29. Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS (2001) Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 67(08):737–742CrossRefGoogle Scholar
  30. Rossi F, de Philippis R (2016) Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer International Publishing, Cham, pp 565–590CrossRefGoogle Scholar
  31. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96CrossRefGoogle Scholar
  32. Staub R (1961) Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. Schweiz Z Hydrol 23(1):82–198Google Scholar
  33. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11(12):1424–1440CrossRefGoogle Scholar
  34. Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34(7):1225–1244CrossRefGoogle Scholar
  35. Yalcin I, Hicsasmaz Z, Boz B, Bozoglu F (1994) Characterization of the extracellular polysaccharide from freshwater microalgae Chlorella sp. LWT Food Sci Technol 27(2):158–165CrossRefGoogle Scholar
  36. Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plant 24(5):341–353CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Center for Glycomics, Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Plant Ecology, Biorefinery Research Centre of CompetenceInstitute of Botany of the Czech Academy of SciencesTřeboňCzech Republic

Personalised recommendations