Advertisement

Chemical Papers

, Volume 72, Issue 10, pp 2375–2395 | Cite as

Hydroxyapatite/polyurethane composites as promising biomaterials

  • Misbah Sultan
Review
  • 168 Downloads

Abstract

The biomaterials are intended to augment or replace the function of tissues or organs in human body. Every year millions of people require soft- or hard-tissue regeneration worldwide. Polymers and their composites are a large class of biomaterials appreciated for tissue regeneration. Polyurethane (PUR) is an organic synthetic multifunctional polymer with established biomedical applications. The hydroxyapatite (HA) is one of the biocompatible ceramic materials similar to natural bone material. The amalgamation of hydroxyapatite with polyurethane enhances the bioactivity of final product along with the combination of individual properties. Here, we review the synthesis, characterization, and applications studies of HA/PUR-based biomaterials. We initiate this review with a brief and representative compilation of the chemical composition and methods of preparation for HA/PUR biomaterials. Then, moving ahead, first, we review the simple HA/PUR biomaterials and use of PUR templates. Second, we review the significance of modified HA and PUR in these biomaterials. Third, we discuss the potential of bio-based PUR and inclusion of third constituent in the HA/PUR biomaterials. Then, we appraise the involvement of trace nutrient in deposition of HA on PUR scaffolds. Finally, we consider the other expedient applications of HA/PUR composites such as drug delivery system and sorbent of pollutants.

Keywords

Hydroxyapatite Polyurethane Biomaterials Polymer composites Tissue regeneration 

References

  1. Amedi HR, Aghajani M (2018) Poly urethane mixed matrix membranes for propylene and propane separation. Chem Pap.  https://doi.org/10.1007/s11696-018-0386-x Google Scholar
  2. Bizari D, Moztarzadeh F, Rabiee M, Tahriri M, Banafatizadeh F, Ansari A, Khoshroo K (2011) Development of biphasic hydroxyapatite/dicalcium phosphate dihydrate (DCPD) bone graft using polyurethane foam template: in vitro and in vivo study. Adv Appl Ceram 110:417–425.  https://doi.org/10.1179/1743676111y.0000000052 CrossRefGoogle Scholar
  3. Bogya ES, Barabás R, Csavdári A, Dejeu V, Baldea L (2009) Hydroxyapatite modified with silica used for sorption of copper(II). Chem Pap 63:568–573.  https://doi.org/10.2478/s11696-009-0059-x CrossRefGoogle Scholar
  4. Boissard CIR, Bourban PE, Tami AE, Alini M, Eglin D (2009) Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomater 5:3316–3327.  https://doi.org/10.1016/j.actbio.2009.05.001 CrossRefGoogle Scholar
  5. Bos M, Dam GWV, Jongsma T, Bruin P, Penngins AJ (1995) The effect of filler surface modification on the mechanical properties of hydroxyapatite-reinforced polyurethane composites. Compos Interface 3:169–176.  https://doi.org/10.1163/156855495x00057 CrossRefGoogle Scholar
  6. Briand GG, Burford N (1999) Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev 99:2601–2657.  https://doi.org/10.1021/cr980425s CrossRefGoogle Scholar
  7. Brockman KS, Kizhakkedathu JN, Santerre JP (2017) Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI). Acta Biomater 48:368–377.  https://doi.org/10.1016/j.actbio.2016.11.005 CrossRefGoogle Scholar
  8. Cheng J, Tang X, Zhao J, Shi T, Zhao P, Lin C (2016) Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy. Acta Biomater 30:155–167.  https://doi.org/10.1016/j.actbio.2015.11.048 CrossRefGoogle Scholar
  9. Chetty A, Steynberg T, Moolman S, Nilen R, Joubert A, Richter W (2008) Hydroxyapatite-coated polyurethane for auricular cartilage replacement: an in vitro study. J Biomed Mater Res A 84:475–482.  https://doi.org/10.1002/jbm.a.31465 CrossRefGoogle Scholar
  10. Ciobanu G, Ignat D, Luca C (2009) Polyurethane–hydroxyapatite bionanocomposites: development and characterization. Chem Bull Politehnica Univ. (Timisoara) 54(68):57–60Google Scholar
  11. Ciobanu G, Ilisei S, Lucaa C, Carjaa G, Ciobanu O (2012a) The effect of vitamins to hydroxyapatite growth on porous polyurethane substrate. Prog Org Coat 74:648–653.  https://doi.org/10.1016/j.porgcoat.2011.09.025 CrossRefGoogle Scholar
  12. Ciobanu G, Luca C, Ilisei S, Luca AC (2012b) New polyurethane-hydroxyapatite composites membranes. Environ Eng Manag J 11:291–295Google Scholar
  13. Ciobanu G, Ilisei S, Luca C (2014) Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold. Mater Sci Eng C 35:36–42.  https://doi.org/10.1016/j.msec.2013.10.024 CrossRefGoogle Scholar
  14. Dong ZH, Zhang L, Li YB, Zhou G, Lee SW (2008) A guided bone regeneration membrane composed of hydroxyapatite and polyurethane. J Ceram Process Res 9:478–481Google Scholar
  15. Dong Z, Li Y, Zou Q (2009) Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci 255:6087–6091.  https://doi.org/10.1016/j.apsusc.2009.01.083 CrossRefGoogle Scholar
  16. Du JJ, Zuo Y, Zou Q, Li YB (2013) Characterization and cell response of novel hydroxyapatite/glyceride-based polyurethane porous scaffold. Mater Sci Forum 761:141–144.  https://doi.org/10.4028/www.scientific.net/MSF.761.141 CrossRefGoogle Scholar
  17. Du JJ, Zuo Y, Zou Q, Sun B, Zhou MB, Man LM, Li Y, Li YB (2014a) Preparation and in vitro evaluation of polyurethane composite scaffolds based on glycerol esterified castor oil and hydroxyapatite. Mater Res Innov 18:160–168.  https://doi.org/10.1179/1433075x13y.0000000180 CrossRefGoogle Scholar
  18. Du JJ, Zou Q, Zuo Y, Li Y (2014b) Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering. Int J Surg 12:404–407.  https://doi.org/10.1016/j.ijsu.2014.03.005 CrossRefGoogle Scholar
  19. Ellis J, Jackson AM, Scott RP, Wilson AD (1990) Adhesion of carboxylate cements to hydroxyapatite III. Adsorption of poly(alkenoic acids). Biomaterials 11:379–384.  https://doi.org/10.1016/0142-9612(90)90090-d CrossRefGoogle Scholar
  20. Fu SZ, Meng XH, Fan J, Yang LL, Lin S, Wen QL, Chen Y (2014) In vitro and in vivo degradation behavior of n-HA/PCL–Pluronic–PCL polyurethane composites. J Biomed Mater Res Part A 102:479–486.  https://doi.org/10.1002/jbm.a.34717 CrossRefGoogle Scholar
  21. Gabriel L, Zavaglia C, Jardini A, Dias C, Filho RM (2014) Isocyanates as precursors to biomedical polyurethanes. Chem Eng Trans 38:253–258.  https://doi.org/10.3303/cet1438043 Google Scholar
  22. Gabriel LP, dos Santos MEM, Jardini AL, Bastos GN, Dias CG, Webster TJ, Maciel FR (2017) Bio-based polyurethane for tissue engineering applications: how hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine 13:201–208.  https://doi.org/10.1016/j.nano.2016.09.008 CrossRefGoogle Scholar
  23. Gholmai M, Mohammadi T, Mosleh S, Hemmati M (2017) CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chem Pap 71:1839–1853.  https://doi.org/10.1007/s11696-017-0177-9 CrossRefGoogle Scholar
  24. Gogoi S, Kumar M, Mandal BB, Karak N (2016) A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. RSC Adv.  https://doi.org/10.1039/c6ra02341j Google Scholar
  25. Grzesiak J, Marycz K, Szarek D, Bednarz P, Laska P (2015) Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications. Mater Sci Eng C 52:163–170.  https://doi.org/10.1016/j.msec.2015.03.050 CrossRefGoogle Scholar
  26. Higuita LP, Vargas AF, Gil MJ, Giraldo LF (2015) Synthesis and characterization of nanocomposite based on hydroxyapatite and monetite. Mater Lett 175:169–172.  https://doi.org/10.1016/j.matlet.2016.04.011 CrossRefGoogle Scholar
  27. Hill CM, An YH, Kang QK, Hartsock LH, Gogolewski S, Gorna K (2007) Osteogenesis of osteoblast seeded polyurethane-hydroxyapatite scaffolds in nude mice. Macromol Symp 253:94–97.  https://doi.org/10.1002/masy.200750713 CrossRefGoogle Scholar
  28. Ilisei S, Ciobanu G, Luca C (2012) Pyridoxine incorporated in hydroxyapatite/polyurethane composites. Mater Plast 49:285–287Google Scholar
  29. Jang SH, Min BG, Jeong YG, Lyoo WS, Lee SC (2008) Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. J Hazard Mater 152:1285–1292.  https://doi.org/10.1016/j.jhazmat.2007.08.003 CrossRefGoogle Scholar
  30. Jiang J, Li LM, Lin LL, Zuo Y, Li YB, Li JD (2016a) Effects of γ-ray irradiation on the properties of nano-hydroxyapatite/polyurethane composite porous scaffolds. Mater Sci Forum 852:422–427.  https://doi.org/10.4028/www.scientific.net/MSF.852.422 CrossRefGoogle Scholar
  31. Jiang J, Li L, Li K, Li G, You F, Zuo Y, Li Y, Li J (2016b) Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. J Biomater Sci Polym Ed 27:1584–1598.  https://doi.org/10.1080/09205063.2016.1221699 CrossRefGoogle Scholar
  32. Khan AS, Ahmed Z, Edirisinghe MA, Wong FSL, Rehman IU (2008) Preparation and characterization of a novel bioactive restorative composite based on covalently coupled polyurethane–nanohydroxyapatite fibres. Acta Biomater 4:1275–1287.  https://doi.org/10.1016/j.actbio.2008.04.016 CrossRefGoogle Scholar
  33. Kim S, Chen Y, Ho EA, Liu S (2017) Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery. Acta Biomater 47:100–112.  https://doi.org/10.1016/j.actbio.2016.10.006 CrossRefGoogle Scholar
  34. Kolmas J, Krukowski S, Laskus A, Jurkitewicz M (2016) Synthetic hdroxyapatite in pharmaceutical applications. Ceram Int 42:2472–2487.  https://doi.org/10.1016/j.ceramint.2015.10.048 CrossRefGoogle Scholar
  35. Lambert JR (1991) Clinical indications and efficacy of colloidal bismuth subcitrate. Scand J Gastroenterol 26:13–21.  https://doi.org/10.3109/00365529109093215 CrossRefGoogle Scholar
  36. Laschke MW, Strohe A, Menger MD, Alini M, Eglin D (2010) In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly (ester-urethane) composite scaffold for bone tissue engineering. Acta Biomater 6:2020–2027.  https://doi.org/10.1016/j.actbio.2009.12.004 CrossRefGoogle Scholar
  37. Lett JA, Sundareswari M, Gill AS, Ravichandran K, Prabhkar JJ (2017) The role of cellulose in the formulation of interconnected macro and micoporous biocompatible hydroxyapatite scaffolds. Mech Mater Sci Eng.  https://doi.org/10.2412/mmse.62.43.650 Google Scholar
  38. Li L, Zuo Y, Zou Q, Yang B, Lin L, Li J, Li Y (2015a) Hierarchical structure and mechanical improvement of an n-HA/GCO–PU composite scaffold for bone regeneration. ACS Appl Mater 7:22618–22629.  https://doi.org/10.1021/acsami.5b07327 CrossRefGoogle Scholar
  39. Li L, Zhao M, Li J, Zuo Y, Zou Q, Li Y (2015b) Preparation and cell infiltration of lotus-type porous nano-hydroxyapatite/polyurethane scaffold for bone tissue regeneration. Mater Lett 149:25–28.  https://doi.org/10.1016/j.matlet.2015.02.106 CrossRefGoogle Scholar
  40. Liu H, Zhang L, Zuo Y, Wang L, Huang D, Shen J, Li Y (2009) Preparation and characterization of aliphatic polyurethane and hydroxyapatite composite scaffold. J Appl Polym Sci 5:2968–2975.  https://doi.org/10.1002/app.29862 CrossRefGoogle Scholar
  41. Liu H, Zhang L, Shi P, Zou Q, Zuo Y, Li Y (2010a) Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J Biomed Mater Res Part B 95:36–46.  https://doi.org/10.1002/jbm.b.31680 CrossRefGoogle Scholar
  42. Liu H, Zhang L, Li J, Zou Q, Zuo Y, Tian W, Li Y (2010b) Physicochemical and biological properties of nano-hydroxyapatite-reinforced aliphatic polyurethanes membranes. J Biomater Sci Polym Ed 21:1619–1636.  https://doi.org/10.1163/092050609x12524778957011 CrossRefGoogle Scholar
  43. Luo JB, Qiua SX, Wanga YL, Laia RH, Xieb XY (2014) Preparation and physicochemical properties of hydroxyapatite/polyurethane nanocomposites. Chin J Polym Sci 32:467–475.  https://doi.org/10.1007/s10118-014-1414-0 CrossRefGoogle Scholar
  44. Martinez-Valencia AB, Torre GCDL, Moller AD, Esparza-Ponce HE, Espinosa-Medina MA (2011) Study of bioactivity, biodegradability and mechanical properties of polyurethane/nano-hydroxyapatite hybrid composites. Int J Phys Sci 6:6681–6691.  https://doi.org/10.5897/ijps11.769 Google Scholar
  45. Marycz K, Marędziak M, Grzesiak J, Lis A, Śmieszek A (2016) Biphasic polyurethane/polylactide sponges doped with nano-hydroxyapatite (nHAp) combined with human adipose-derived mesenchymal stromal stem cells for regenerative medicine applications. Polymers 8:339.  https://doi.org/10.3390/polym8100339 CrossRefGoogle Scholar
  46. Marycz K, Sobierajska P, Smieszek A, Maredziak M, Wiglusz K, Wiglusz RJ (2017) Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP:Li+, Eu3+ application in theranostics. Mater Sci Eng C 78:151–162.  https://doi.org/10.1016/j.msec.2017.04.041 CrossRefGoogle Scholar
  47. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–3237.  https://doi.org/10.1016/j.biomaterials.2006.01.031 CrossRefGoogle Scholar
  48. Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Perez RO, Flores-Cano JV, Berber-Mendoza MS (2014) Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J Ind Eng Chem 20:4014–4021.  https://doi.org/10.1016/j.jiec.2013.12.105 CrossRefGoogle Scholar
  49. Mi HY, Palumbo S, Jing X, Turng LS, Li WJ, Peng XF (2014a) Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size. J Biomed Mater Res Part B 102:1434–1444.  https://doi.org/10.1002/jbm.b.33122 CrossRefGoogle Scholar
  50. Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LS (2014b) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49:2324–2337.  https://doi.org/10.1007/s10853-013-7931-3 CrossRefGoogle Scholar
  51. Mishima FD, Louro LHL, Moura FN, Gobbo LA, da Silva MHP (2012) Hydroxyapatite scaffolds produced by hydrothermal deposition of monetite on polyurethane sponges substrates. Key Eng Mater 493–494:820–825.  https://doi.org/10.4028/www.scientific.net/KEM.493-494.820 Google Scholar
  52. Mourabet M, Rhilassi AE, Boujaady HE, Bennani-Ziatni M, Hamri RE, Taitai A (2015) Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J Saudi Chem Soc 19:603–615.  https://doi.org/10.1016/j.jscs.2012.03.003 CrossRefGoogle Scholar
  53. Navarro-Baena I, Arrieta MP, Sonseca A, Torre L, López D, Giménez E, Kenny JM, Peponi L (2015) Biodegradable nano composites based on poly(ester-urethane) and nanosized hydroxyapatite: plastificant and reinforcement effects. Polym Degrad Stab 121:171–179.  https://doi.org/10.1016/j.polymdegradstab.2015.09.002 CrossRefGoogle Scholar
  54. Neill RO, McCarthy HO, Montufar EB, Ginebra MB, Wilson DI, Lennon A, Dunne N (2017) Critical review: injectability of calcium phosphate pastes and cements. Acta Biomater 50:1–19.  https://doi.org/10.1016/j.actbio.2016.11.019 CrossRefGoogle Scholar
  55. Ni GX, Yao ZP, Huang GT, Liu WG, Lu WW (2011) The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J Mater Sci Mater Med 22:961–967.  https://doi.org/10.1007/s10856-011-4264-0 CrossRefGoogle Scholar
  56. Nirmala R, Nam KT, Navamathavan R, Park SJ, Kim HY (2011) Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method. Nanoscale Res Lett 6:2.  https://doi.org/10.1007/s11671-010-9737-4 Google Scholar
  57. Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler WH, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57:184–193.  https://doi.org/10.1016/j.bone.2013.07.038 CrossRefGoogle Scholar
  58. Piticescu RM, Popescu LM, Buruiana T (2012) Composites containing hydroxyapatite and polyurethane ionomers as bone substitution materials. Dig J Nano Biol 7:477–485Google Scholar
  59. Poorvisha R, Suriyaraj SP, Thavamani P, Naidu R, Megharaj M, Bhattacharyya A, Selvakumar R (2015) Synthesis and characterisation of 3-dimensional hydroxyapatite nanostructures using a thermoplastic polyurethane nanofiber sacrificial template. RSC Adv 5:97773–97780.  https://doi.org/10.1039/c5ra18593a CrossRefGoogle Scholar
  60. Popescu LM, Piticescu RM, Antonelli A, Rusti CF, Carboni E, Sfara C, Magnani M, Badilita V, Vasile V, Trusca R, Buruiana T (2013a) Recent advances in synthesis, characterization of hydroxyapatite/polyurethane composites and study of their biocompatible properties. J Mater Sci Med 24:2491–2503.  https://doi.org/10.1007/s10856-013-5005-3 CrossRefGoogle Scholar
  61. Popescu LM, Rusti CF, Piticescu RM, Buruiana T, Valero T, Kintzios S (2013b) Synthesis and characterization of acid polyurethane–hydroxyapatite composites for biomedical applications. J Compos Mater 47:603–612.  https://doi.org/10.1177/0021998312443396 CrossRefGoogle Scholar
  62. Ragu A, Senthilarasan K, Sakthivel P (2014) Synthesis and characterization of nano hydroxyapatite with polyurethane nano composite. IJSRP 5:124–127Google Scholar
  63. Rahman MM (2017) Improvements of antimicrobial and barrier properties of waterborne polyurethane containing hydroxyapatite-silver nanoparticles. J Adhes Sci Technol 31:613–625.  https://doi.org/10.1080/01694243.2016.1228744 CrossRefGoogle Scholar
  64. Ramakrishna S, Mayer J, Wintermantel E, Leongn KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224.  https://doi.org/10.1016/s0266-3538(00)00241-4 CrossRefGoogle Scholar
  65. Ratnakar A, Prasad KH, Vivekananthan S, Karthika PC, Kumar A (2016) Synthesis and characterization of polyurethane-titanium dioxide–hydroxyapatite nanocomposite for biomedical applications. Mater Today Proc 3:4052–4057.  https://doi.org/10.1016/j.matpr.2016.11.072 CrossRefGoogle Scholar
  66. Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solution synthesis of hydroxyapatite designer particulates. Solid State Ion 151:393–402.  https://doi.org/10.1016/s0167-2738(02)00545-3 CrossRefGoogle Scholar
  67. Rìo JAGD, Morando PJ, Cicerone DS (2004) Natural materials for remediation of industrial effluents: comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. J Environ Manag 71:169–177.  https://doi.org/10.1016/j.jenvman.2004.02.004 CrossRefGoogle Scholar
  68. Rozhnova R, Kebuladze I, Galatenko N (2001) Bioactive polyurethane implants with hydroxyapatite. Eng Mater 192:693–696.  https://doi.org/10.4028/www.scientific.net/KEM.192-195.693 Google Scholar
  69. Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045.  https://doi.org/10.1016/j.actbio.2013.06.014 CrossRefGoogle Scholar
  70. Sariibrahimoglu K, Yang W, Leeuwenburgh SCG, Yang F, Wolke JGC, Zuo Y, Li Y, Jansen JA (2015) Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration. J Biomed Mater Res Part A 103:1930–1939.  https://doi.org/10.1002/jbm.a.35327 CrossRefGoogle Scholar
  71. Selvakumar M, Jaganathan SK, Nando GB, Chattopadhyay S (2015) Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility. J Biomed Nanotechnol 11:291–305.  https://doi.org/10.1166/jbn.2015.1975 CrossRefGoogle Scholar
  72. Selvakumar M, Priyanka S, Pawar HS, Francis NK, Das B, Sathishkumar G, Subramanian B, Jaganathan SK, George G, Anandhan S, Dhara S, Nando GB, Chattopadhyay S (2016a) On-demand guided bone regeneration with microbial protection of ornamented SPU scaffold with bismuth-doped single crystalline hydroxyapatite: augmentation and cartilage formation. ACS Appl Mater Interfaces 8:4086–4100.  https://doi.org/10.1021/acsami.5b11723 CrossRefGoogle Scholar
  73. Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S (2016b) Excavating the role of aloe vera wrapped mesoporous hydroxyapatite frame ornamentation in newly architectured polyurethane scaffolds for osteogenesis and guided bone regeneration with microbial protection. ACS Appl Mater Interfaces 8:5941–5960.  https://doi.org/10.1021/acsami.6b01014 CrossRefGoogle Scholar
  74. Sheikh FA, Kanjwal MA, Macossay J, Barakat NAM, Kim HYA (2012) simple approach for synthesis, characterization and bioactivity of bovine bones to fabricate the polyurethane nanofiber containing hydroxyapatite nanoparticles. Express Polym Lett.  https://doi.org/10.3144/expresspolymlett.2012.5 Google Scholar
  75. Shen J, Qi H, Ren D (2015) Preparation and characterisation of nanohydroxyapatite/polyurethane adapted to B-ultrasonic examination. Mater Res Innov 19:500–504.  https://doi.org/10.1179/1432891714z.0000000001140 Google Scholar
  76. Silva GA, Countinho OP, Ducheyne P, Reis RL (2007) Materials in particulate form for tissue engineering. 2. Applications in bone. J Tissue Eng Regen Med 1:97–109.  https://doi.org/10.1002/term.1 CrossRefGoogle Scholar
  77. Sionkowaska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials review. Prog Polym Sci 36:1254–1276.  https://doi.org/10.1016/j.progpolymsci.2011.05.003 CrossRefGoogle Scholar
  78. Sipaut CS, Jafarzadeh M, Sundang M, Ahmad N (2016) Size control in porosity of hydroxyapatite using a mold of polyurethane foam. J Inorg Organomet Polym Mater 26:1066–1074.  https://doi.org/10.1007/s10904-016-0426-3 CrossRefGoogle Scholar
  79. Song EH, Cho KI, Kim HE, Jeong SH (2017) Biomimetic coating of hydroxyapatite on glycerol phosphate-conjugated polyurethane via mineralization. ACS Omega 2:981–987.  https://doi.org/10.1021/acsomega.7b00036 CrossRefGoogle Scholar
  80. Sorianobrucher H, Avendano P, Oryan M, Braun SD, Manhart MD, Balm TK, Soriano HA (1991) Bismuth subsalicylate in the treatment of acute diarrhea in children: a clinical study. Pediatrics 87:18–27Google Scholar
  81. Sowden EM, Stitch SR (1957) Trace elements in human tissue II. Estimation of the concentrations of stable strontium and barium in human bone. Biochem J 67:104–109 (PMCID: PMC1200115) CrossRefGoogle Scholar
  82. Szcaes A, Holysz L, Chibowski E (2017) Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 249:321–330.  https://doi.org/10.1016/j.cis.2017.04.007 CrossRefGoogle Scholar
  83. Szycher M (2012) Szycher’s handbook of polyurethanes, 2nd edn. CRC Press, FloridaCrossRefGoogle Scholar
  84. Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU (2014) Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 39:95–110.  https://doi.org/10.1016/j.jmbbm.2014.06.019 CrossRefGoogle Scholar
  85. Venkatesan J, Kim S (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10:3124–3140.  https://doi.org/10.1166/jbn.2014.1893 CrossRefGoogle Scholar
  86. Wang X, Min BG (2008) Comparison of porous poly (vinyl alcohol)/hydroxyapatite composite cryogels and cryogels immobilized on poly(vinyl alcohol) and polyurethane foams for removal of cadmium. J Hazard Mater 156:381–386.  https://doi.org/10.1016/j.jhazmat.2007.12.027 CrossRefGoogle Scholar
  87. Wang Q, Chen C, Liu W, He X, Zhou N, Zhang D, Gu H, Li J, Jiang J, Haung W (2017) Levofloxacin loaded mesoporou silica microspheres/nanohydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep.  https://doi.org/10.1038/srep41808 Google Scholar
  88. Weems AC, Wacker KT, Carrow JK, Boyle AJ, Maitland DJ (2017) Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater 59:33–44.  https://doi.org/10.1016/j.actbio.2017.06.030 CrossRefGoogle Scholar
  89. Wosek J (2015) Fabrication of composite polyurethane/hydroxyapatite scaffolds using solvent-casting salt leaching technique. Adv Mater Sci 15:14–20.  https://doi.org/10.1515/adms-2015-0003 CrossRefGoogle Scholar
  90. Xie R, Hu J, Ng F, Tan L, Qin T, Zhang M, Guo X (2017) High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceram Int 43:4794–4802.  https://doi.org/10.1016/j.ceramint.2016.11.216 CrossRefGoogle Scholar
  91. Yang W, Both SK, Zuo Y, Birgani ZT, Habibovic P, Li Y, Jansen JA, Yang F (2015) Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering. J Biomed Mater Res A 7:2251–2259.  https://doi.org/10.1002/jbm.a.35365 CrossRefGoogle Scholar
  92. Yin Z, Chen X, Song X, Hu JJ, Tang QM, Zhu T, Shen WL, Chen JL, Liu HH, Heng BC, Ouyang HW (2015) Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials 44:173185.  https://doi.org/10.1016/j.biomaterials.2014.12.027 CrossRefGoogle Scholar
  93. Zdrahala ZJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90CrossRefGoogle Scholar
  94. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10:1035–1049.  https://doi.org/10.1016/j.actbio.2013.11.001 CrossRefGoogle Scholar
  95. Zhao CX, Zhang WD (2008) Preparation of waterborne polyurethane nanocomposites: polymerization from functionalized hydroxyapatite. Eur Polym J 44:1988–1995.  https://doi.org/10.1016/j.eurpolymj.2008.04.029 CrossRefGoogle Scholar
  96. Zhao CX, Zhang WD, Mai AP, Huang XM, Ouyang YS (2011) Synthesis and characterization of waterborne polyurethane/Cu(II)-loaded hydroxyapatite nanocomposites with antibacterial activity. J Nanosci Nanotechnol 11:6779–6787.  https://doi.org/10.1166/jnn.2011.4212 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of the PunjabLahorePakistan

Personalised recommendations