Chemical Papers

, Volume 72, Issue 7, pp 1779–1787 | Cite as

Triphenylamine 3,6-carbazole derivative as hole-transporting material for mixed cation perovskite solar cells

  • Rana Nakar
  • An-Na Cho
  • Nicolas Berton
  • Jérôme Faure-Vincent
  • François Tran Van
  • Nam-Gyu Park
  • Bruno Schmaltz
Original Paper


A new hole transporting material based on 3,6-disubstituted carbazole (3,6Cz-TPA) was synthesized through a one-step approach and was used as hole-transporting material in perovskite solar cells. The HTM exhibits molecular glass behavior and a high glass transition temperature of 146 °C. A hole-mobility of 7.0 × 10−6 cm2 V−1 s−1 has been measured which is slightly lower than the mobility of spiro-OMeTAD (2.5 × 10−5 cm2 V−1 s−1). The HOMO energy level, similar to the HOMO of spiro-OMeTAD, is suitable to allow the hole injection from the perovskite. Solar cells based on organic–inorganic hybrid cation perovskite light absorber have been built. The optimization of the concentration of the HTM shows an optimal concentration around 30 mM. Finally, the perovskite cells based on 3,6Cz-TPA as HTM lead to a power conversion efficiency around 16%, similar to the most commonly used spiro-OMeTAD (17%).


Carbazole Triphenylamine Hole transporting material Perovskite solar cells Mixed cation 



This work was supported by the French ministry of Higher Education and Research. This work was also supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea under contracts no. NRF-2012M3A6A7054861 (Global Frontier R&D Program on Center for Multiscale Energy System). The mobility measurements has been performed with the use of the Hybriden facility at CEA-Grenoble. The LANEF framework (ANR-10-LABX-51-01) is acknowledged for its support with mutualized infrastructure. Dr. B. Schmaltz acknowledges Prof. Dr. K. Müllen, Dr. H-J Räder and S. Türk from Max Planck Institute for Polymer Research (Mainz, Germany) for mass spectroscopy measurements.

Supplementary material

11696_2018_484_MOESM1_ESM.docx (629 kb)
Supplementary material 1 (DOCX 629 kb)


  1. Ambrose JF, Carpenter LL, Nelson RF (1975) Electrochemical and spectroscopic properties of cation radicals: III. Reaction pathways of carbazolium radical ions. J Electrochem Soc 122:876–894. CrossRefGoogle Scholar
  2. Arora N, Orlandi S, Dar MI, Aghazada S, Jacopin G, Cavazzini M, Mosconi E, Gratia P, De Angelis F, Pozzi G, Graetzel M, Nazeeruddin MK (2016) High open-circuit voltage: fabrication of formamidinium lead bromide perovskite solar cells using fluorene–dithiophene derivatives as hole-transporting materials. ACS Energy Lett 1:107–112. CrossRefGoogle Scholar
  3. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585CrossRefGoogle Scholar
  4. Benhattab S, Cho A-N, Nakar R, Berton N, Van Tran F, Park N-G, Schmaltz B (2018a) Simply designed carbazole-based hole-transporting materials for efficient perovskite solar cells. Org Electron 56:27–30. CrossRefGoogle Scholar
  5. Benhattab S, Nakar R, Rodriguez Acosta JW, Berton N, Faure-Vincent J, Bouclé J, Van Tran F, Schmaltz B (2018b) Carbazole-based twin molecules as hole-transporting materials in dye-sensitized solar cells. Dyes Pigments 151:238–244. CrossRefGoogle Scholar
  6. Chen D-Y, Tseng W-H, Liang S-P, Wu C-I, Hsu C-W, Chi Y, Hung W-Y, Chou P-T (2012) Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells. Phys Chem Chem Phys 14:11689–11694. CrossRefPubMedGoogle Scholar
  7. Chen H, Bryant D, Troughton J, Kirkus M, Neophytou M, Miao X, Durrant JR, McCulloch I (2016) One-step facile synthesis of a simple hole transport material for efficient perovskite solar cells. Chem Mater 28:2515–2518. CrossRefGoogle Scholar
  8. Cho A-N, Kim H-S, Bui T-T, Sallenave X, Goubard F, Park N-G (2016) Role of LiTFSI in high T g triphenylamine-based hole transporting material in perovskite solar cell. RSC Adv 6:68553–68559. CrossRefGoogle Scholar
  9. Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F, Boyen H-G (2015) Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater 5:1500477. CrossRefGoogle Scholar
  10. Gao W, Wang S, Xiao Y, Li X (2012) Synthesis and properties of new luminescent hole transporting materials containing triphenylamine and carbazole units. Spectrochim Acta Part A Mol Biomol Spectrosc 98:215–221. CrossRefGoogle Scholar
  11. Gratia P, Magomedov A, Malinauskas T, Daskeviciene M, Abate A, Ahmad S, Grätzel M, Getautis V, Nazeeruddin MK (2015) A methoxydiphenylamine-substituted carbazole twin derivative: an efficient hole-transporting material for perovskite solar cells. Angew Chemie Int Ed 54:11409–11413. CrossRefGoogle Scholar
  12. Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093. CrossRefGoogle Scholar
  13. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok S Il (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903. CrossRefGoogle Scholar
  14. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok S Il (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480. CrossRefGoogle Scholar
  15. Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chemie Int Ed 53:2812–2824. CrossRefGoogle Scholar
  16. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:1–7. CrossRefGoogle Scholar
  17. Kulbak M, Cahen D, Hodes G (2015) How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J Phys Chem Lett 6:2452–2456. CrossRefPubMedGoogle Scholar
  18. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. CrossRefGoogle Scholar
  19. Lee J-W, Kim D-H, Kim H-S, Seo S-W, Cho SM, Park N-G (2015) Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 5:1501310. CrossRefGoogle Scholar
  20. Malinauskas T, Tomkute-Luksiene D, Sens R, Daskeviciene M, Send R, Wonneberger H, Jankauskas V, Bruder I, Getautis V (2015) Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl Mater Interfaces 7:11107–11116. CrossRefPubMedGoogle Scholar
  21. Paul GK, Mwaura J, Argun AA, Taranekar P, Reynolds JR (2006) Cross-linked hyperbranched arylamine polymers as hole-transporting materials for polymer LEDs. Macromolecules 39:7789–7792. CrossRefGoogle Scholar
  22. Puckyte G, Schmaltz B, Tomkeviciene A, Degbia M, Grazulevicius JV, Melhem H, Bouclé J, Tran-Van F (2013) Carbazole-based molecular glasses for efficient solid-state dye-sensitized solar cells. J Power Sources 233:86–92. CrossRefGoogle Scholar
  23. Ren Y-K, Ding X-H, Wu Y-H, Zhu J, Hayat T, Alsaedi A, Xu Y-F, Li Z-Q, Yang S-F, Dai S-Y (2017) Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells. J Mater Chem A 5:20327–20333. CrossRefGoogle Scholar
  24. Ren Y-K, Shi X-Q, Ding X-H, Zhu J, Hayat T, Alsaedi A, Li Z-Q, Xu X-X, Yang S-F, Dai S-Y (2018) Facile fabrication of perovskite layers with large grains through a solvent exchange approach. Inorg Chem Front 5:348–353. CrossRefGoogle Scholar
  25. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of pn junction solar cells. J Appl Phys 32:510–519. CrossRefGoogle Scholar
  26. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038. CrossRefPubMedGoogle Scholar
  27. Sung SD, Kang MS, Choi IT, Kim HM, Kim H, Hong M, Kim HK, Lee WI (2014) 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials. Chem Commun 50:14161–14163. CrossRefGoogle Scholar
  28. Trots DM, Myagkota SV (2008) High-temperature structural evolution of caesium and rubidium triiodoplumbates. J Phys Chem Solids 69:2520–2526. CrossRefGoogle Scholar
  29. Wu F, Ji Y, Wang R, Shan Y, Zhu L (2017a) Molecular engineering to enhance perovskite solar cell performance: incorporation of benzothiadiazole as core unit for low cost hole transport materials. Dyes Pigments 143:356–360. CrossRefGoogle Scholar
  30. Wu F, Shan Y, Qiao J, Zhong C, Wang R, Song Q, Zhu L (2017b) Replacement of biphenyl by bipyridine enabling powerful hole transport materials for efficient perovskite solar cells. ChemSusChem 10:3833–3838. CrossRefPubMedGoogle Scholar
  31. Xu B, Sheibani E, Liu P, Zhang J, Tian H, Vlachopoulos N, Boschloo G, Kloo L, Hagfeldt A, Sun L (2014) Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Adv Mater 26:6629–6634. CrossRefPubMedGoogle Scholar
  32. Yang Y, You J (2017) Make perovskite solar cells stable. Nature 544:155–156. CrossRefPubMedGoogle Scholar
  33. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M (2016) Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ Sci 9:656–662. CrossRefGoogle Scholar
  34. Zhang M-D, Zheng B-H, Zhuang Q-F, Huang C-Y, Cao H, Chen M-D, Wang B (2017) Two dimethoxyphenylamine-substituted carbazole derivatives as hole-transporting materials for efficient inorganic–organic hybrid perovskite solar cells. Dyes Pigments 146:589–595. CrossRefGoogle Scholar
  35. Zhao X, Kim H-S, Seo J-Y, Park N-G (2017) Effect of selective contacts on the thermal stability of perovskite solar cells. ACS Appl Mater Interfaces 9:7148–7153. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA6299Université de ToursToursFrance
  2. 2.School of Chemical Engineering and Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  3. 3.Université Grenoble-Alpes, CEA, CNRS, INAC-SyMMESGrenobleFrance

Personalised recommendations