Chemical Papers

, Volume 72, Issue 10, pp 2425–2432 | Cite as

Pd supported on N-doped-ordered mesoporous carbons’ catalysts for selective hydrodechlorination of 4-chlorophenol

  • Rongrong Li
  • Shiting Wang
  • Yuan Hu
  • Hong Chen
  • Jingjing Chen
  • Chu Chu
  • Jianli Zheng
Original Paper


Pd catalysts supported on N-doped-ordered mesoporous carbons (NOMC) have been prepared and tested for selective hydrogenation of 4-chlorophenol (4-CP) with H2. The difference from the previous methods is that the NOMC was synthesized using urea as nitrogen source via one-pot route. The rate constant of Pd/NOMC for hydrodechlorination of 4-CP was about 135.9 h−1 which were higher than Pd/OMC (65.6 h−1) and Pd/AC (20.8 h−1). It could be attributed to the synergetic effects of mesoporous structure, N-doped supports, and the stabilized small PdNPs. The conversion changed from 100 to 90.2% after the sixth reaction using Pd/NOMC which could be caused by the palladium leaching.


Mesoporous carbon N-doped Pd 4-chlorophenol Hydrogenation 



N-doped-ordered mesoporous carbons




Catalytic hydrodechlorination


Small-angle X-ray diffraction


Transmission electron microscopy






Pd nanoparticles



The project was supported by the National Natural Science Foundation, China (21506138), and the Natural Science Foundation of Zhejiang Province, China (LQ15B060001).

Supplementary material

11696_2018_477_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 118 kb)
11696_2018_477_MOESM2_ESM.doc (38 kb)
Supplementary material 2 (DOC 38 kb)


  1. Albers P, Pietsch J, Parker S (2001) Poisoning and deactivation of palladium catalysts. J Mol Catal A Chem 173:275–286CrossRefGoogle Scholar
  2. Aramendıa M, Borau V, Garcıa I, Jimenez C, Lafont F, Marinas A, Marinas J, Urbano F (1999) Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: activity and deactivation. J Catal 187:392–399CrossRefGoogle Scholar
  3. Baeza J, Calvo L, Rodriguez J, Gilarranz M (2016) Catalysts based on large size-controlled Pd nanoparticles for aqueous-phase hydrodechlorination. Chem Eng J 294:40–48CrossRefGoogle Scholar
  4. Benitez J, Gloria D (2000) Effect of chlorine released during hydrodechlorination of chlorobenzene over Pd, Pt and Rh supported catalysts. React Kinet Catal Lett 70:67–72CrossRefGoogle Scholar
  5. Bernard C, Marie C, Francois F, Didier T (1993) Conversion under hydrogen of dichlorodifluoromethane over supported palladium catalysts. J Catal 141:21–33CrossRefGoogle Scholar
  6. Böhringer B, Guerra Gonzalez O, Eckle I, Müller M, Giebelhausen J, Schrage C, Fichtner S (2011) Polymer-based spherical activated carbons-from adsorptive properties to filter performance. Chem Ing Tech 83:53–60CrossRefGoogle Scholar
  7. Bovkun TT, Sasson Y, Blum J (2005) Conversion of chlorophenols into cyclohexane by a recyclable Pd-Rh catalyst. J Mol Catal A Chem 242:68–73CrossRefGoogle Scholar
  8. Calvol L, Gilarranz M, Casas J, Mohedano A, Rodriquez J (2009) Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst. J Hazard Mater 161:842–847CrossRefGoogle Scholar
  9. Chang W, Kim H, Lee G, Byoung J (2016) Catalytic hydrodechlorination reaction of chlorophenols by Pd nanoparticles supported on graphene research on chemical intermediates. Res Chem Intermed 42:71–82CrossRefGoogle Scholar
  10. Datta K, Reddy K, Ariga K, Vinu A (2010) Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew Chem 49:5961–5965CrossRefGoogle Scholar
  11. Deng H, Fan G, Wang C, Zhang L (2014) Aqueous phase catalytic hydrodechlorination of 4-chlorophenol over palladium deposited on reduced graphene oxide. Catal Commun 46:219–223CrossRefGoogle Scholar
  12. Diaz E, Ordóñez S, Bueres R, Asedegbega-Nieto E, Sastre H (2010) High-surface area graphites as supports for hydrodechlorination catalysts: tuning support surface chemistry for an optimal performance. Appl Catal B Environ 99:181–190CrossRefGoogle Scholar
  13. Diaz E, Mohedano A, Casas J, Calvo J, Gilarranz M, Rodriguez J (2011) Comparison of activated carbon-supported Pd and Rh catalysts for aqueous-phase hydrodechlorination. Appl Catal B Environ 106:469–475CrossRefGoogle Scholar
  14. Diaz E, Mohedano A, Casas J, Rodriguez J (2016) Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Appl Catal B Environ 181:429–435CrossRefGoogle Scholar
  15. Gómez-Quero S, Díaz E, Cárdenas-Lizana F, Keane M (2010a) Solvent effects in the catalytic hydrotreament of haloaromatics over Pd/Al2O3 in water + organic mixtures. Chem Eng Sci 65:3786–3797CrossRefGoogle Scholar
  16. Gómez-Quero SF, Cárdenas-Lizana F, Keane MA (2010b) Solvent effects in the hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3. AlChE J 56:756–767Google Scholar
  17. Gómez-Quero S, Cárdenas-Lizana F, Keane M (2011) Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3: batch vs. continuous operation. Chem Eng J 166:1044–1051CrossRefGoogle Scholar
  18. Gómez-Sainero LM, Seoane XL, Fierro JLG, Arcoya A (2002) Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/carbon catalysts: nature and role of pd active species. J Catal 209:279–288CrossRefGoogle Scholar
  19. Gong Y, Zhang P, Xu X, Li Y, Li H, Wang Y (2013) A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J Catal 297:272–280CrossRefGoogle Scholar
  20. Hashimoto Y, Ayame A (2003) Low-temperature hydrodechlorination of chlorobenzenes on platinum-supported alumina catalysts. Appl Catal A Gen 250:247–254CrossRefGoogle Scholar
  21. Hildebrand H, Mackenzie K, Kopinke F-D (2009) Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions. Energy Environ Sci 43:3254–3259Google Scholar
  22. Huang Y, Cai H, Feng D, Gu D, DengY TuB, Wang H, Webley P, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643CrossRefGoogle Scholar
  23. Jadbabaei N, Ye T, Shuai D, Zhang H (2017) Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol. Appl Catal B Environ 205:576–586CrossRefGoogle Scholar
  24. Li X, Wang H, Robinson J, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. Am Chem Soc 131:15939–15944CrossRefGoogle Scholar
  25. Li X, Wang X, Markus A (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3:2170–2174CrossRefGoogle Scholar
  26. Li Y, Xu X, Zhang P, Wang Y (2013) Highly selective Pd@mpg-C3N4 catalyst for phenol hydrogenation in aqueous phase. RSC Adv 27:10973–10982CrossRefGoogle Scholar
  27. Li R, Zhao J, Han D, Li X (2017) One-step synthesis of B-doped mesoporous carbon as supports of Pd nanoparticles for liquid phase catalytic hydrodechlorination. Catal Commun 97:116–119CrossRefGoogle Scholar
  28. Liu L, Wang F, Shao G, Yuan Z (2010) A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon 48:2089–2099CrossRefGoogle Scholar
  29. Liu D, Lei J, Guo L, Deng K (2011) Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. Carbon 49:2113–2119CrossRefGoogle Scholar
  30. Liu D, Lei J, Guo L, Qu D, Li Y, Su B (2012) One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. Carbon 50:476–487CrossRefGoogle Scholar
  31. Lyonnard S, Bartlett J, Sizgek E, Finnie K, Zemb T, Woolfrey J (2002) Role of interparticle potential in controlling the morphology of spray-dried powders from aqueous nanoparticle sols. Langmuir 18:10386–10397CrossRefGoogle Scholar
  32. Mitoma Y, Kakeda M, Simion A, Egashira N, Simion C (2009) Metallic Ca-Rh/C-methanol, a high-performing system for the hydrodechlorination/ring reduction of mono- and poly chlorinated aromatic substrates. Energy Environ Sci 43:5952–5958Google Scholar
  33. Molina C, Pizarro A, Gilarranz M, Casas J, Rodriguez J (2010) Hydrodechlorination of 4-chlorophenol in water using Rh-Al pillared clays. Chem Eng J 160:578–585CrossRefGoogle Scholar
  34. Molina CB, Pizarro AH, Casas JA, Rodriguez JJ (2014) Aqueous-phase hydrodechlorination of chlorophenols with pillared clays-supported Pt, Pd and Rh catalysts. Appl Catal B Environ 148:330–338CrossRefGoogle Scholar
  35. Molina CB, Calvo L, Gilarranz MA, Casas JA, Rodriguez JJJ (2009) Pd–Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. J Hazard Mater 172:214–223CrossRefPubMedGoogle Scholar
  36. Moon D, Jo Chung M, You Park K, In Hong S (1998) Deactivation of Pd catalysts in the hydrodechlorination of chloropentafluoroethane. Appl Catal A Gen 168:159–170CrossRefGoogle Scholar
  37. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2014) Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC–CWPO) for the abatement of organochlorinated water pollutants. Appl Catal A 488:78–85CrossRefGoogle Scholar
  38. Öcal M, Maciejewski M, Baiker A (1999) Conversion of CCl2F2(CFC-12) in the presence and absence of H2 on sol-gel derived Pd/Al2O3 catalysts. Appl Catal B Environ 21:279–289CrossRefGoogle Scholar
  39. Osegueda O, Dafinov A, Llorca J, Medina F, Sueiras J (2015) Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chem Eng J 262:344–355CrossRefGoogle Scholar
  40. Romero-Anaya AJ, Ouzzine M, Lillo-Ródenas MA, Linares-Solano A (2014) Carbon 68:296–307CrossRefGoogle Scholar
  41. Rong H, Cai S, Niu Z, Li Y (2013) Composition-dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal 3:1560–1563CrossRefGoogle Scholar
  42. Santiago G, Fernando C, Mark K (2008) Effect of metal dispersion on the liquid-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3. Ind Eng Chem Res 47:6841–6853CrossRefGoogle Scholar
  43. Shao Y, Xu Z, Wan H, Chen H, Liu F, Li L, Zheng S (2010) Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts. J Hazard Mater 179:135–140CrossRefPubMedGoogle Scholar
  44. Shao Y, Xu Z, Wan H, Wan Y, Chen H, Zheng S, Zhu D (2011) Enhanced liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over mesoporous carbon supported Pd catalysts. Catal Commun 12:1405–1409CrossRefGoogle Scholar
  45. Sohn H, Celik G, Gunduz S, Majumdar SS, Dean SL, Edmiston PL, Ozkan US (2017) Effect of high-temperature on the swellable organically-modified silica (SOMS) and its application to gas-phase hydrodechlorination of trichloroethylene. Appl Catal B Environ 209:80–90CrossRefGoogle Scholar
  46. Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y (2005) Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride & dagger. Adv Mater 17:1648–1652CrossRefGoogle Scholar
  47. Wang Y, Yao J, Li H, Su D, Markus A (2011) Highly selective hydrogenation of Phenol and derivatives over a Pd@Carbon nitride catalyst in aqueous media. J Am Chem Soc 133:2362–2365CrossRefPubMedGoogle Scholar
  48. Wang J, Liu H, Gu X, Wang H, Su D (2014) Synthesis of nitrogen-containing ordered mesoporous carbon as a metal-free catalyst for selective oxidation of ethylbenzene. Chem Commun 50:9182–9184CrossRefGoogle Scholar
  49. Wiersma A, Van de Sandt E, Makkee M, Luteijn C, Van Bekkum H, Moulijn JA (1996) Process for the selective hydrogenolysis of CCl2F2(CFC-12) into CH2F2(HFC-32). Catal Today 27:257–264CrossRefGoogle Scholar
  50. Wiersma A, van de Sandt E, Makkee M, Moulijn JA (2001) Deactivation of palladium on activated carbon in the selective hydrogenolysis of CCl2F2(CFC-12) into CH2F2(HFC-32). Appl Catal A Gen 212:223–238CrossRefGoogle Scholar
  51. Xia C, Xu J, Wu W, Liang X (2004) Pd/C-catalyzed hydrodehalogenation of aromatic halides in aqueous solutions at room temperature under normal pressure. Catal Commun 5:383–386CrossRefGoogle Scholar
  52. Xia C, Liu Y, Zhou S, Yang C, Liu S, Xu J, Yu J, Chen J, Liang X (2009) The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater. J Hazard Mater 169:1029–1033CrossRefPubMedGoogle Scholar
  53. Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y (2012) Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134:16987–16990CrossRefPubMedGoogle Scholar
  54. Xue C, Tu B, Zhao D (2008) Evaporation-induced coating and self-assembly of ordered mesoporous carbon–silica composite monoliths with macroporous architecture on polyurethane foams. Adv Funct Mater 18:3914–3921CrossRefGoogle Scholar
  55. Yoneda T, Takido T, Konuma K (2007) Hydrodechlorination reactivity of para-substituted chlorobenzenes over platinum/carbon catalyst. J Mol Catal A Chem 265:80–89CrossRefGoogle Scholar
  56. Yuan G, Keane M (2004a) Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/Al2O3: a consideration of HCl/catalyst interactions and solution pH effects. Appl Catal B Environ 52:301–314CrossRefGoogle Scholar
  57. Yuan G, Keane M (2004b) Role of base addition in the liquid-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3 and Pd/C. J Catal 225:510–522CrossRefGoogle Scholar
  58. Yuan G, Keane M (2007) Aqueous-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3: reaction under controlled pH. Ind Eng Chem Res 46:705–715CrossRefGoogle Scholar
  59. Zhang F, Meng Y, Gu D, Chen Y, Tu B, Zhao D (2006) An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chemistry 18:5279–5288Google Scholar
  60. Zhang F, Jin J, Zhong X, Li S, Niu J, Li R, Ma J (2011) Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem 13:1238–1243CrossRefGoogle Scholar
  61. Zhang P, Gong Y, Li H, Chen Z, Wang Y (2013) Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat Commun 4:1593CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Rongrong Li
    • 1
  • Shiting Wang
    • 1
  • Yuan Hu
    • 1
  • Hong Chen
    • 1
  • Jingjing Chen
    • 1
  • Chu Chu
    • 1
  • Jianli Zheng
    • 1
  1. 1.School of Pharmaceutical and Chemical EngineeringTaiZhou UniversityTaizhouPeople’s Republic of China

Personalised recommendations