A review on liquid-phase heterogeneous dehydrogenation of formic acid: recent advances and perspectives

Review
  • 41 Downloads

Abstract

With the increasing consumption of the fossil energy and the global warming, hydrogen has attracted extensive research due to the clean, renewable, and high-energy density properties. As a hydrogen carrier, formic acid is a main byproduct from many biomass processes and can be used in fuel cells directly. More importantly, formic acid is recyclable by the “formic acid-carbon dioxide cycle”, which does not produce any exhaust. Based on the previous reports, this study is focused on liquid-phase heterogeneous dehydrogenation of formic acid and summarizes the corresponding catalysts including mono-metallic, bi-metallic, and tri-metallic samples. Moreover, the comparison of catalytic performance about the dehydrogenation process is demonstrated considering the parameters of solvent, TOF (turnover frequency), and temperature. Furthermore, the morphology, composition, and structure of the catalysts, as well as the synthetic methods, are discussed and compared. Finally, some suggestions are proposed to design the corresponding catalysts and enhance the catalytic performance for formic acid dehydrogenation.

Keywords

Formic acid Hydrogen Dehydrogenation Catalysts 

Notes

Acknowledgements

The authors greatly appreciate the following financial supports: National Natural Science Foundation of China (Nos. 21376186 and 21706203), China Postdoctoral Science Foundation (2016M592794 and 2017T100754), Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ2030), Postdoctoral Science Foundation in Shaanxi Province of China (2016BSHEDZZ20), Fundamental Research Funds for the Central Universities (Creative Team Plan No. cxtd2017004 in Xi’an Jiaotong University), research funding from the Joint Laboratory of Xi’an Jiaotong Univ. and Shaanxi Coal Chemical Industry Technology Research Institute Co. Ltd.

References

  1. Akbayrak S, Tonbul Y, Özkar S (2017) Nanoceria supported palladium (0) nanoparticles: superb catalyst in dehydrogenation of formic acid at room temperature. Appl Catal B Environ 206:384–392.  https://doi.org/10.1016/j.apcatb.2017.01.063 CrossRefGoogle Scholar
  2. Bi QY, Du XL, Liu YM, Cao Y, He HY, Fan KN (2012) Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J Am Chem Soc 134:8926–8933.  https://doi.org/10.1021/ja301696e CrossRefGoogle Scholar
  3. Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y (2016) Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium. J Power Sources 328:463–471.  https://doi.org/10.1016/j.jpowsour.2016.08.056 CrossRefGoogle Scholar
  4. Bide Y, Nabid MR, Etemadi B (2016) Facile synthesis and catalytic application of selenium doped graphene/CoFe2O4 for highly efficient and noble metal free dehydrogenation of formic acid. Int J Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2016.08.108 Google Scholar
  5. Bulushev DA, Jia L, Beloshapkin S, Ross JR (2012) Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium. Chem Commun 48:4184.  https://doi.org/10.1039/c2cc31027a CrossRefGoogle Scholar
  6. Bulut A et al (2015a) MnOx-promoted PdAg alloy nanoparticles for the additive-free dehydrogenation of formic acid at room temperature. ACS Catal.  https://doi.org/10.1021/acscatal.5b01121 Google Scholar
  7. Bulut A, Yurderi M, Karatas Y, Zahmakiran M, Kivrak H, Gulcan M, Kaya M (2015b) Pd–MnOx nanoparticles dispersed on amine-grafted silica: Highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions. Appl Catal B Environ 164:324–333.  https://doi.org/10.1016/j.apcatb.2014.09.041 CrossRefGoogle Scholar
  8. Cai YY, Li XH, Zhang YN, Wei X, Wang KX, Chen JS (2013) Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. Angew Chem (Int ed English) 52:11822–11825.  https://doi.org/10.1002/anie.201304652 CrossRefGoogle Scholar
  9. Chang J, Feng L, Liu C, Xing W, Hu X (2014) An effective Pd-Ni(2)P/C anode catalyst for direct formic acid fuel cells. Angew Chem 53:122.  https://doi.org/10.1002/anie.201308620 CrossRefGoogle Scholar
  10. Chen Y, Zhu QL, Tsumori N, Xu Q (2015) Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide: a non-noble metal sacrificial approach. J Am Chem Soc 137:106.  https://doi.org/10.1021/ja511511q CrossRefGoogle Scholar
  11. Dai H, Xia B, Lan W, Cheng D, Su J, Wei L, Cheng G (2015) Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Appl Catal B Environ 165:57–62.  https://doi.org/10.1016/j.apcatb.2014.09.065 CrossRefGoogle Scholar
  12. Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sourc 169:239–246.  https://doi.org/10.1016/j.jpowsour.2007.03.050 CrossRefGoogle Scholar
  13. Enthaler S, Langermann JV, Schmidt T (2010) Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage? Energy Environ Sci 3:1207–1217.  https://doi.org/10.1039/B907569K CrossRefGoogle Scholar
  14. Feng C, Wang Y, Gao S, Shang N, Wang C (2016) Hydrogen generation at ambient conditions: agPd bimetal supported on metal–organic framework derived porous carbon as an efficient synergistic catalyst. Catal Commun 78:17–21.  https://doi.org/10.1016/j.catcom.2016.01.034 CrossRefGoogle Scholar
  15. Gao ST, Liu W, Feng C, Shang NZ, Wang C (2016) A Ag–Pd alloy supported on an amine-functionalized UiO-66 as an efficient synergetic catalyst for the dehydrogenation of formic acid at room temperature. Catal Sci Technol 6:869–874.  https://doi.org/10.1039/c5cy01190f CrossRefGoogle Scholar
  16. Gu X, Lu ZH, Jiang HL, Akita T, Xu Q (2011) Synergistic catalysis of metal-organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133:11822–11825.  https://doi.org/10.1021/ja200122f CrossRefGoogle Scholar
  17. Ha S, Larsen R, Zhu Y, Masel RI (2004) Direct formic acid fuel cells with 600 mA cm−2 at 0.4 V and 22 °C. Fuel Cells 4:337–343.  https://doi.org/10.1002/fuce.200400052 CrossRefGoogle Scholar
  18. Hasheminejad E, Ojani R, Raoof JB (2017) A rapid synthesis of high surface area PdRu nanosponges: composition-dependent electrocatalytic activity for formic acid oxidation. J Energy Chem.  https://doi.org/10.1016/j.jechem.2017.02.009 Google Scholar
  19. Hattori M, Shimamoto D, Ago H, Tsuji M (2015) AgPd@Pd/TiO2 nanocatalyst synthesis by microwave heating in aqueous solution for efficient hydrogen production from formic acid. J Mater Chem A 3:10666–10670.  https://doi.org/10.1039/C5TA01434D CrossRefGoogle Scholar
  20. Hu C, Pulleri JK, Ting SW, Chan KY (2014) Activity of Pd/C for hydrogen generation in aqueous formic acid solution. Int J Hydrogen Energy 39:381–390.  https://doi.org/10.1016/j.ijhydene.2013.10.067 CrossRefGoogle Scholar
  21. Huang Y, Zhou X, Yin M, Liu C, Xing W (2010) ChemInform abstract: novel PdAu@Au/C Core—shell catalyst: superior activity and selectivity in formic acid decomposition for hydrogen generation. Chem Mater.  https://doi.org/10.1021/cm101285f Google Scholar
  22. Ji X et al (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chem 2:286–293.  https://doi.org/10.1038/nchem.553 CrossRefGoogle Scholar
  23. Jia L, Bulushev DA, Beloshapkin S, Ross JRH (2014) Hydrogen production from formic acid vapour over a Pd/C catalyst promoted by potassium salts: evidence for participation of buffer-like solution in the pores of the catalyst. Appl Catal B Environ 160–161:35–43.  https://doi.org/10.1016/j.apcatb.2014.05.004 CrossRefGoogle Scholar
  24. Jia L, Bulushev DA, Ross JRH (2016) Formic acid decomposition over palladium based catalysts doped by potassium carbonate. Catal Today 259:453–459.  https://doi.org/10.1016/j.cattod.2015.04.008 CrossRefGoogle Scholar
  25. Jiang HL, Singh SK, Yan JM, Zhang XB, Xu Q (2010) Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions. ChemSusChem 3:541–549.  https://doi.org/10.1002/cssc.201000023 CrossRefGoogle Scholar
  26. Jiang Y et al (2017) La2O3-modified highly dispersed AuPd alloy nanoparticles and their superior catalysis on the dehydrogenation of formic acid. Int J Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2017.01.078 Google Scholar
  27. Jin MH et al (2016) Mesoporous silica supported Pd–MnOx catalysts with excellent catalytic activity in room-temperature formic acid decomposition. Sci Rep 6:33502.  https://doi.org/10.1038/srep33502 CrossRefGoogle Scholar
  28. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 41:81–88.  https://doi.org/10.1039/b904495g CrossRefGoogle Scholar
  29. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177.  https://doi.org/10.1021/ja076877g CrossRefGoogle Scholar
  30. Ke F, Wang L, Zhu J (2015) An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale 7:8321–8325.  https://doi.org/10.1039/c4nr07582j CrossRefGoogle Scholar
  31. Li DN, Wang AJ, Wei J, Zhang QL, Feng JJ (2017a) Facile synthesis of flower-like Au@AuPd nanocrystals with highly electrocatalytic activity for formic acid oxidation and hydrogen evolution reactions. Int J Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2017.05.186 Google Scholar
  32. Li J et al (2017b) Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. J Catal.  https://doi.org/10.1016/j.jcat.2017.06.007 Google Scholar
  33. Li Z, Yang X, Tsumori N, Liu Z, Himeda Y, Autrey T, Xu Q (2017c) Tandem nitrogen functionalization of porous carbon: toward immobilizing highly active palladium nanoclusters for dehydrogenation of formic acid. ACS Catal.  https://doi.org/10.1021/acscatal.7b00053 Google Scholar
  34. Liu J, Lan L, Li R, Liu X, Wu C (2015) Agglomerated Ag–Pd catalyst with performance for hydrogen generation from formic acid at room temperature. Int J Hydrogen Energy 41:951–958.  https://doi.org/10.1016/j.ijhydene.2015.10.144 CrossRefGoogle Scholar
  35. Liu P, Gu X, Zhang H, Cheng J, Song J, Su H (2016) Visible-light-driven catalytic activity enhancement of Pd in AuPd nanoparticles for hydrogen evolution from formic acid at room temperature. Appl Catal B Environ 204:497–504.  https://doi.org/10.1016/j.apcatb.2016.11.059 CrossRefGoogle Scholar
  36. Loges B, Boddien A, Gärtner F, Junge H, Beller M (2010) Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top Catal 53:902–914.  https://doi.org/10.1007/s11244-010-9522-8 CrossRefGoogle Scholar
  37. Lossack AM, Bartels DM, Roduner E (2001) Rate constants and kinetic isotope effects in hydrogen abstractions by H from formic acid. Res Chem Intermed 27:475–483.  https://doi.org/10.1163/156856701104202129 CrossRefGoogle Scholar
  38. Metin O, Sun X, Sun S (2013) Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 5:910–912.  https://doi.org/10.1039/C2NR33637E CrossRefGoogle Scholar
  39. Mori K, Dojo M, Yamashita H (2013) Pd and Pd–Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catal 3:1114–1119.  https://doi.org/10.1021/cs400148n CrossRefGoogle Scholar
  40. Mori K, Tanaka H, Dojo M, Yoshizawa K, Yamashita H (2015) Synergic catalysis of pdcu alloy nanoparticles within a macroreticular basic resin for hydrogen production from formic acid. Chemistry 21:12085–12092.  https://doi.org/10.1002/chem.201501760 CrossRefGoogle Scholar
  41. Mori K, Naka K, Masuda S, Miyawaki K, Yamashita H (2017) Cover feature: palladium copper chromium ternary nanoparticles constructed in situ within a basic resin: enhanced activity in the dehydrogenation of formic acid (ChemCatChem 18/2017). ChemCatChem 9:3430.  https://doi.org/10.1002/cctc.201700595 CrossRefGoogle Scholar
  42. Navlanigarcía M, Mori K, Ai N, Kuwahara Y, Yamashita H (2015) Screening of carbon-supported PdAg nanoparticles in the hydrogen production from formic acid. Ind Eng Chem Res 88:5244–5250.  https://doi.org/10.1021/acs.iecr.6b01635 Google Scholar
  43. Ojeda M, Iglesia E (2009) Formic acid dehydrogenation on au-based catalysts at near-ambient temperatures. Angew Chem 48:4800–4803.  https://doi.org/10.1002/anie.200805723 CrossRefGoogle Scholar
  44. Ping Y, Yan JM, Wang ZL, Wang HL, Jiang Q (2013) Ag0.1-Pd0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate. J Mater Chem A 1:12188–12191.  https://doi.org/10.1039/C3TA12724A CrossRefGoogle Scholar
  45. Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB (2013) Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. Chem Commun 49:10028–10030.  https://doi.org/10.1039/c3cc46248j CrossRefGoogle Scholar
  46. Qin YL, Wang JW, Wu YM, Wang LM (2014) Improved hydrogen production from formic acid under ambient conditions using a PdAu catalyst on a graphene nanosheets-carbon black support Rsc. Advances 4:30068–30073.  https://doi.org/10.1039/C4RA05379F Google Scholar
  47. Rhee YW, Su YH, Masel RI (2003) Crossover of formic acid through Nafion((R)) membranes. J Power Sourc 117:35–38.  https://doi.org/10.1016/S0378-7753(03)00352-5 CrossRefGoogle Scholar
  48. Song FZ, Zhu QL, Tsumori N, Xu Q (2015) Diamine-alkalized reduced graphene oxide: immobilization of sub-2 nm palladium nanoparticles and optimization of catalytic activity for dehydrogenation of formic acid. ACS Catal 5:150730113944007.  https://doi.org/10.1021/acscatal.5b01411 Google Scholar
  49. Tedsree K et al (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat Nanotechnol 6:302–307.  https://doi.org/10.1038/nnano.2011.42 CrossRefGoogle Scholar
  50. Ting SW, Cheng S, Tsang KY, Van der Laak N, Chan KY (2009) Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure. Chem Commun 47:7333–7335.  https://doi.org/10.1039/b916507j CrossRefGoogle Scholar
  51. Ting SW, Hu C, Pulleri JK, Chan KY (2012) Heterogeneous catalytic generation of hydrogen from formic acid under pressurized aqueous conditions. Ind Eng Chem Res 51:4861–4867.  https://doi.org/10.1021/ie2030079 CrossRefGoogle Scholar
  52. Wang X, Hu JM, Hsing I (2004) Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion(R) membrane. J Electroanal Chem 562:73–80.  https://doi.org/10.1016/j.jelechem.2003.08.010 CrossRefGoogle Scholar
  53. Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q (2013) Au@Pd core–shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. J Mater Chem A 1:12721–12725.  https://doi.org/10.1039/C3TA12531A CrossRefGoogle Scholar
  54. Wang ZL et al (2014a) Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst. Int J Hydrogen Energy 39:4850–4856.  https://doi.org/10.1016/j.ijhydene.2013.12.148 CrossRefGoogle Scholar
  55. Wang ZL, Yan JM, Zhang YF, Ping Y, Wang HL, Jiang Q (2014b) Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature. Nanoscale 6:3073–3077.  https://doi.org/10.1039/c3nr05809c CrossRefGoogle Scholar
  56. Wang L, Zhai JJ, Jiang K, Wang JQ, Cai WB (2015) Pd–Cu/C electrocatalysts synthesized by one-pot polyol reduction toward formic acid oxidation: structural characterization and electrocatalytic performance. Int J Hydrogen Energy 40:1726–1734.  https://doi.org/10.1016/j.ijhydene.2014.11.128 CrossRefGoogle Scholar
  57. Wang N, Sun Q, Bai R, Li X, Guo G, Yu J (2016) In Situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc 138:7484.  https://doi.org/10.1021/jacs.6b03518 CrossRefGoogle Scholar
  58. Wang Y et al (2017) Graphene oxide-assisted facile synthesis of platinum-tellurium nanocubes with enhanced catalytic activity for formic acid electro-oxidation. Nanotechnology 28:335701.  https://doi.org/10.1088/1361-6528/aa7987 CrossRefGoogle Scholar
  59. Wen M, Mori K, Kuwahara Y, Yamashita H (2016) Plasmonic Au@Pd nanoparticles supported on basic metal-organic framework: synergic effect for boosting H2 production from formic acid. ACS Energy Letter.  https://doi.org/10.1021/acsenergylett.6b00558 Google Scholar
  60. Xu H et al (2017) N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2017.04.160 Google Scholar
  61. Yadav M, Xu Q (2012) Liquid-phase chemical hydrogen storage materials. Energy Environ Sci 5:9698–9725.  https://doi.org/10.1039/C2EE22937D CrossRefGoogle Scholar
  62. Yang J, Tian C, Wang L, Fu H (2011) An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem 21:3384–3390.  https://doi.org/10.1039/C0JM03361H CrossRefGoogle Scholar
  63. Yang F, Zhang Y, Liu PF, Cui Y, Ge XR, Jing QS (2016a) Pd–Cu alloy with hierarchical network structure as enhanced electrocatalysts for formic acid oxidation. Int J Hydrogen Energy 41:6773–6780.  https://doi.org/10.1016/j.ijhydene.2016.02.145 CrossRefGoogle Scholar
  64. Yang L, Luo W, Cheng G (2016b) Monodisperse CoAgPd nanoparticles assembled on graphene for efficient hydrogen generation from formic acid at room temperature. Int J Hydrogen Energy 41:439–446.  https://doi.org/10.1016/j.ijhydene.2015.10.074 CrossRefGoogle Scholar
  65. Yang X, Pachfule P, Chen Y, Tsumori N, Xu Q (2016c) Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem Commun 52:4171–4174.  https://doi.org/10.1039/c5cc10311h CrossRefGoogle Scholar
  66. Yang N et al (2017) Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv Mater.  https://doi.org/10.1002/adma.201700769 Google Scholar
  67. Yurderi M, Bulut A, Zahmakiran M, Kaya M (2014) Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition. Appl Catal B Environ 160–161:514–524.  https://doi.org/10.1016/j.apcatb.2014.06.004 CrossRefGoogle Scholar
  68. Zhang LY, Liu Z (2017) Graphene decorated with Pd4Ir nanocrystals: ultrasound-assisted synthesis, and application as a catalyst for oxidation of formic acid. J Colloid Interface Sci 505:783.  https://doi.org/10.1016/j.jcis.2017.06.084 CrossRefGoogle Scholar
  69. Zhang S, Metin Ö, Su D, Sun S (2013) Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem 52:3681–3684.  https://doi.org/10.1002/anie.201300276 CrossRefGoogle Scholar
  70. Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C. Chem Commun 44:3540–3542.  https://doi.org/10.1039/b803661f CrossRefGoogle Scholar
  71. Zhou X, Huang Y, Liu C, Liao J, Lu T, Xing W (2010) Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature. ChemSusChem 3:1379–1382.  https://doi.org/10.1002/cssc.201000199 CrossRefGoogle Scholar
  72. Zhu QL, Tsumori N, Xu Q (2013) Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions. Chem Sci 5:195–199.  https://doi.org/10.1039/c3sc52448e CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations