Chemical Papers

, Volume 72, Issue 4, pp 773–798 | Cite as

Ligand-driven light-induced spin transition in spin crossover compounds

  • Barbora Brachňaková
  • Ivan ŠalitrošEmail author


Spin crossover (SCO) coordination compounds that show bistability between low spin and high spin states are promising light-controllable molecular switches. Selective wavelength irradiation of the coordination centre at low temperatures is known as a light-induced excited spin state trapping (LIESST effect) and it leads to the modulation of physical properties of SCO materials on the macroscopic as well as on the molecular level. Another way to trigger the spin state conversion by light is based on the isomerization of photoactive ligand moieties. The ligand field strength is changed due to light-induced photoisomerization and, therefore, corresponding cistrans or ring-closing/ring-opening isomeric couples might exhibit different spin states at isothermal conditions. Such an approach is called as ligand driven light-induced spin change (LD LISC effect). From the application point of view, it presents a promising alternative to the LIESST effect because it can operate at room temperature. This article is focused on the most interesting iron and cobalt SCO compounds with photoisomerizable ligands and provides the overview of achieving results based on the LD LISC effect.


Spin crossover Light Switching Photoisomerization Photomagnetism LIESST effect Fe(II) and Co(II) complexes 



Grant Agencies (Slovakia: APVV-14-0078, APVV-14-0073, VEGA 1/0125/18, STU Grant scheme for Support of Excellent Teams of Young Researchers and COST Action CM1305 (ECOSTBio)) are acknowledged for the financial support.


  1. Ando H, Nakao Y, Sato H, Sakaki S (2010) Comparison of electronic structures and light-induced excited spin state trapping between [Fe (2-picolylamine) 3] 2+ and its iron (iii) analogue. Dalton Trans 39(7):1836–1845. CrossRefGoogle Scholar
  2. Antošová N, Petro M (2016) Verification of the method for assessing the severity of the condition ETICS with biocorrosion. Czech J Civ Eng 2(1):7–13 (ISSN 2336-7148) Google Scholar
  3. Antošová N, Ďubek M, Petro M (2017) Verification of the technology choice repairs ETICS. In: Advances and trends in engineering sciences and technologies II—proceedings of the 2nd international conference on engineering sciences and technologies, ESaT, pp 323–328Google Scholar
  4. Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41(5):1809–1825. CrossRefGoogle Scholar
  5. Bannwarth A, Schmidt SO, Peters G, Sönnichsen FD, Thimm W, Herges R, Tuczek F (2012) FeIII spin-crossover complexes with photoisomerizable ligands: experimental and theoretical studies on the ligand-driven light-induced spin change effect. Eur J Inorg Chem 16:2776–2783. CrossRefGoogle Scholar
  6. Bao X, Guo P-H, Liu J-L, Leng J-D, Tong M-L (2011) Crystalline-state cis-to-trans transformation of a two-dimensional spin-crossover system. Chem A Eur J 17(8):2335–2339. CrossRefGoogle Scholar
  7. Becker H-D (1993) Unimolecuar photochemistry of anhracenes. Chem Rev 93(1):145–172. CrossRefGoogle Scholar
  8. Bertoni R, Cammarata M, Lorenc M, Matar SF, Létard J-F, Lemke HT, Collet E (2015) Ultrafast light-induced spin-state trapping photophysics investigated in Fe (phen)2 (NCS)2 spin-crossover crystal. Acc Chem Res 48(3):774–781. CrossRefGoogle Scholar
  9. Bléger D, Hecht S (2015) Visible-light-activated molecular switches. Angew Chem Int Ed 54(39):11338–11349. CrossRefGoogle Scholar
  10. Boča R (1999) Theoretical foundations of molecular magnetism, vol 1. Elsevier, AmsterdamGoogle Scholar
  11. Boča R, Gembický M, Herchel R, Haase W, Jäger L, Wagner C, Ehrenberg H, Fuess H (2003) Ferromagnetism in a dinuclear nickel (II) complex containing triethylenetetramine and tricyanomethanide. Inorg Chem 42(22):6965–6967. CrossRefGoogle Scholar
  12. Boča R, Nemec I, Šalitroš I, Pavlik J, Herchel R, Renz F (2009) Interplay between spin crossover and exchange interaction in iron (III) complexes. Pure Appl Chem 81(8):1357–1383. CrossRefGoogle Scholar
  13. Boillot ML, Roux C, Audiere JP, Dausse A, Zarembowitch J (1996) Ligand-driven light-induced spin change in transition-metal complexes: selection of an appropriate system and first evidence of the effect, in Fe(II)(4-styrylpyridine)(4)(NCBPh(3))(2). Inorg Chem 35(13):3975–3980. CrossRefGoogle Scholar
  14. Boillot M-L, Chantraine S, Zarembowitch J, Lallemand J-Y, Prunet J (1999) First ligand-driven light-induced spin change atroomtemperature in a transition-metal molecular compound. New J Chem 23(2):179–184. CrossRefGoogle Scholar
  15. Boillot M-L, Zarembowitch J, Sour A (2004) Ligand-driven light-induced spin change (LD-LISC): a promising photomagnetic effect. In: Spin crossover in transition metal compounds II. Springer, Berlin, pp 261–276.
  16. Boillot ML, Pillet S, Tissot A, Rivière E, Claiser N, Lecomte C (2009) Ligand-driven light-induced spin change activity and bidirectional photomagnetism of styrylpyridine iron(II) complexes in polymeric media. Inorg Chem 48(11):4729–4736. CrossRefGoogle Scholar
  17. Bonhommeau S, Molnár G, Galet A, Zwick A, Real JA, McGarvey JJ, Bousseksou A (2005) One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2){Pt(CN)4}] at room temperature. Angew Chem Int Ed 44(26):4069–4073. CrossRefGoogle Scholar
  18. Bousseksou A, Boukheddaden K, Goiran M, Consejo C, Boillot M, Tuchagues J (2002) Dynamic response of the spin-crossover solid Co(H2(fsa)2en)(py)2 to a pulsed magnetic field. Phys Rev B 65(17):172412. CrossRefGoogle Scholar
  19. Bousseksou A, Molnar G, Salmon L, Nicolazzi W (2011) Molecular spin crossover phenomenon: recent achievements and prospects. Chem Soc Rev 40(6):3313–3335. CrossRefGoogle Scholar
  20. Bozec H, Guerchais V, Bian Z (2009) Molecular organometallic materials for optics, vol 28. Springer Science & Business Media, BerlinGoogle Scholar
  21. Breuning E, Ruben M, Lehn JM, Renz F, Garcia Y, Ksenofontov V, Gütlich P, Wegelius E, Rissanen K (2000) Spin crossover in a supramolecular Fe4II [2×2] grid triggered by temperature, pressure, and light. Angew Chem Int Ed 39(14):2504–2507.;2-B CrossRefGoogle Scholar
  22. Castellano M, Ferrando-Soria J, Pardo E, Julve M, Lloret F, Mathoniere C, Pasan J, Ruiz-Perez C, Canadillas-Delgado L, Ruiz-Garcıa R, Cano J (2011) Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper (II) anthracenophane. Chem Commun 47:11035–11037. CrossRefGoogle Scholar
  23. Cavallini M (2012) Status and perspectives in thin films and patterning of spin crossover compounds. Phys Chem Chem Phys 14(34):11867–11876. CrossRefGoogle Scholar
  24. Decurtins S, Gütlich P, Kçhler CP, Spiering H, Hauser A (1984) Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover syste. Chem Phys Lett 105(1):1–4. CrossRefGoogle Scholar
  25. Decurtins S, Gütlich P, Hasselbach KM, Hauser A, Spiering H (1985) Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study. Inorg Chem 24(14):2174–2178. CrossRefGoogle Scholar
  26. Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Conductance switching in single molecules through conformational changes. Science 292(5525):2303–2307. CrossRefGoogle Scholar
  27. Dri C, Peters MV, Schwarz J, Hecht S, Grill L (2008) Spatial periodicity in molecular switching. Nat Nanotechnol 3 (11):649–653.
  28. Feringa BL (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34(6):504–513. CrossRefGoogle Scholar
  29. Fouché O, Degert J, Jonusauskas G et al (2010) Mechanism for optical switching of the spin crossover [Fe(NH2-trz)3](Br)2·3H2O compound at room temperature. Phys Chem Chem Phys 12:3044–3052CrossRefGoogle Scholar
  30. Gallé G, Etrillard C, Degert J et al (2013) Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop. Appl Phys Lett 102(063302):235. Google Scholar
  31. Garcia Y, Ksenofonto V, Gütlich P (2002) Spin transition molecular materials: new sensors. Hyperfine Interact 139(1–4):543–551. CrossRefGoogle Scholar
  32. Garcia Y, Niel V, Muñoz MC, Real JA (2004) Spin crossover in 1D, 2D and 3D polymeric Fe(II) networks. In: Gütlich P, Goodwin HA (eds) Spin crossover in transition metal compounds I. Springer, Berlin, pp 229–257.
  33. Garcia Y, Ksenofontov V, Lapouyade R, Naik AD, Robert F, Gütlich P (2011) Synthesis and magnetic properties of an iron 1,2-bisthienyl perfluorocyclopentene photochromic coordination compound. Opt Mater 33:942–948. CrossRefGoogle Scholar
  34. Gaspar AB, Carmen Muñoz M, Moliner N, Ksenofontov V, Levchenko G, Gütlich P, Antonio Real J (2003) Polymorphism and pressure driven thermal spin crossover phenomenon in [Fe(abpt)2(NCX)2] (X = S, and Se): synthesis, structure and magnetic properties. Monatshefte für Chemie/Chemical Monthly 134(2):285–294. CrossRefGoogle Scholar
  35. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets, 1st edn. Oxford Scholarship.
  36. Goodwin HA (2004) Spin crossover in cobalt(II) systems. In: Spin crossover in transition metal compounds II. Springer, Berlin, pp 23–47.
  37. Grosjean A, Daro N, Pechev S, Moulet L, Etrillard C, Chastanet G, Guionneau P (2016) The spin-crossover phenomenon at the coherent-domains scale in 1D polymeric powders: evidence for structural fatigability. Eur J Inorg Chem. Google Scholar
  38. Guillaume F, Tobon YA, Bonhommeau S, Létard JF, Moulet L, Freysz E (2014) Photoswitching of the spin crossover polymeric material [Fe(Htrz)2(trz)](BF4) under continuous laser irradiation in a Raman scattering experiment. Chem Phys Lett 604:105–109. CrossRefGoogle Scholar
  39. Guionneau P, Lakhloufi S, Lemée-Cailleau M-H, Chastanet G, Rosa P, Mauriac C, Létard J-F (2012) Mosaicity and structural fatigability of a gradual spin-crossover single crystal. Chem Phys Lett 542:52–55. CrossRefGoogle Scholar
  40. Gütlich P, Goodwin HA (2004) Spin crossover—an overall perspective. In: Spin crossover in transition metal compounds I. Springer, pp 1–47.
  41. Gütlich P, Hauser A, Spiering H (1994) Thermal and optical switching of iron(II) complexes. Angew Chem Int Ed Engl 33(20):2024–2054. CrossRefGoogle Scholar
  42. Gütlich P, Garcia Y, Goodwin HA (2000) Spin crossover phenomena in Fe(II) complexes. Chem Soc Rev 29(6):419–427. CrossRefGoogle Scholar
  43. Gütlich P, Garcia Y, Woike T (2001) Photoswitchable coordination compounds. Coord Chem Rev 219–221:839–879. CrossRefGoogle Scholar
  44. Gütlich P, Gaspar AB, Garcia Y (2013) Spin state switching in iron coordination compounds. Beilstein J Org Chem 9:342–391. CrossRefGoogle Scholar
  45. Halcrow MA (2007) The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron 26(14):3523–3576. CrossRefGoogle Scholar
  46. Halcrow MA (2008) Trapping and manipulating excited spin states of transition metal compounds. Chem Soc Rev 37(2):278–289. CrossRefGoogle Scholar
  47. Halcrow MA (2011) Structure: function relationships in molecular spin-crossover complexes. Chem Soc Rev 40(7):4119–4142. CrossRefGoogle Scholar
  48. Halcrow MA (2013) Spin-crossover materials: properties and applications. Wiley, New YorkCrossRefGoogle Scholar
  49. Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298(5599):1762–1765. CrossRefGoogle Scholar
  50. Harvey EC, Areephong J, Cafolla AA, Long C, Browne WR, Feringa BL, Pryce MT (2014) Incorporating cobalt carbonyl moieties onto ethynylthiophene-based dithienylcyclopentene switches. 1. photochemistry. Organometallics 33(2):447–456. CrossRefGoogle Scholar
  51. Harvey EC, Feringa BL, Vos JG, Browne WR, Pryce MT (2015) Transition metal functionalized photo- and redox-switchable diarylethene based molecular switches. Coord Chem Rev 282–283:77–86. CrossRefGoogle Scholar
  52. Hasegawa Y, Kume S, Nishihara H (2009) Reversible light-induced magnetization change in an azobenzene-attached pyridylbenzimidazole complex of iron(II) at room temperature. Dalton Trans 2:280–284. CrossRefGoogle Scholar
  53. Hasegawa Y, Takahashi K, Kume S, Nishihara H (2011) Complete solid state photoisomerization of bis(dipyrazolylstyrylpyridine)iron(II) to change magnetic properties. Chem Commun 47(24):6846–6848. CrossRefGoogle Scholar
  54. Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290. CrossRefGoogle Scholar
  55. Hauser A (2004) Light-induced spin crossover and the high-spin → low-spin relaxation. In: Spin crossover in transition metal compounds II. Springer, pp 155–198.
  56. Hauser A, Gütlich P, Spiering H (1986) High-spin → low-spin relaxation kinetics and cooperative effects in the hexakis(1-propyltetrazole)iron bis(tetrafluoroborate) and [Zn1-xFex(ptz)6](BF4)2(ptz = 1-propyltetrazole) spin-crossover systems. Inorg Chem 25(23):4245–4248. CrossRefGoogle Scholar
  57. Hauser A, Jeftić J, Romstedt H, Hinek R, Spiering H (1999) Cooperative phenomena and light-induced bistability in iron (II) spin-crossover compounds. Coord Chem Rev 190:471–491. CrossRefGoogle Scholar
  58. Hayami S, Z-z Gu, Shiro M, Einaga Y, Fujishima A, Sato O (2000) First observation of light-induced excited spin state trapping for an iron(III) complex. J Am Chem Soc 122(29):7126–7127. CrossRefGoogle Scholar
  59. Hayami S, Z-z Gu, Yoshiki H, Fujishima A, Sato O (2001) Iron(III) spin-crossover compounds with a wide apparent thermal hysteresis around room temperature. J Am Chem Soc 123(47):11644–11650. CrossRefGoogle Scholar
  60. Hermann D, Emerich H, Lepski R, Schaniel D, Ruschewitz U (2013) Metal-organic frameworks as hosts for photochromic guest molecules. Inorg Chem 52(5):2744–2749. CrossRefGoogle Scholar
  61. Higashiguchi K, Matsuda K, Kobatake S, Yamada T, Kawai T, Irie M (2000) Fatigue mechanism of photochromic 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. Bull Chem Soc Jpn 73(10):2389–2394. CrossRefGoogle Scholar
  62. Hirose S, Hayami S, Maeda Y (2000) Magnetic properties of iron (III) complexes with photoisomerizable ligands. Bull Chem Soc Jpn 73(9):2059–2066. CrossRefGoogle Scholar
  63. Irie M (2000) Photochromism: memories and Switches Introduction. Chem Rev 100(5):1683–1684. CrossRefGoogle Scholar
  64. Irie M (2010) Photochromism of diarylethene molecules and crystals. Proc Jpn Acad Ser B Phys Biol Sci 86(5):472–483. CrossRefGoogle Scholar
  65. Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53(4):803–808. CrossRefGoogle Scholar
  66. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277. CrossRefGoogle Scholar
  67. Kahn O, Kröber J, Jay C (1992) Spin transition molecular materials for displays and data recording. Adv Mater 4(11):718–728. CrossRefGoogle Scholar
  68. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100(5):1777–1788. CrossRefGoogle Scholar
  69. Khusniyarov MM (2016) How to switch spin-crossover metal complexes at constant room temperature. Chem Eur J 22:1–15. CrossRefGoogle Scholar
  70. Kolb JS, Thomson MD, Novosel M, Sénéchal-David K, Rivière É, Boillot M-L, Roskos HG (2007) Characterization of Fe(II) complexes exhibiting the ligand-driven light-induced spin-change effect using SQUID and magnetic circular dichroism. C R Chim 10(1–2):125–136. CrossRefGoogle Scholar
  71. König E, Ritter G, Waigel J, Goodwin H (1985) The effect of pressure on the thermal hysteresis of the first-order spin transition in bis (1, 10-phenanthroline-2-carbaldehyde phenylhydrazone) iron (II) complexes. J Chem Phys 83(6):3055–3061. CrossRefGoogle Scholar
  72. Kronemeijer AJ, Akkerman HB, Kudernac T, van Wees BJ, Feringa BL, Blom PWM, de Boer B (2008) Reversible conductance switching in molecular devices. Adv Mater 20(8):1467–1473. CrossRefGoogle Scholar
  73. Ksenofontov V, Spiering H, Schreiner A, Levchenko G, Goodwin H, Gütlich P (1999) The influence of hydrostatic pressure on hysteresis phase transition in spin crossover compounds. J Phys Chem Solids 60(3):393–399. CrossRefGoogle Scholar
  74. Kumar KS, Šalitroš I, Heinrich B, Fuhr O, Ruben M (2015) A charge neutral iron (II) complex with an above room temperature spin crossover (SCO) and hysteresis loop. J Mater Chem C 3(44):11635–11644. CrossRefGoogle Scholar
  75. Kume S, Nishihara H (2007) Metal-based photoswitches derived from photoisomerization. In: Yam VWW (ed) Photofunctional transition metal complexes. Springer, Berlin, pp 79–112.
  76. Laurent S, Elst LV, Roch A, Muller RN (2007) Structure, synthesis and characterization of contrast agents for magnetic resonance molecular imaging. In: NMR-MRI, μSR and Mössbauer spectroscopies in molecular magnets. Springer, Milan, pp 71–87.
  77. Lawson Daku LM, Linares J, Boillot M-L (2007) Ab initio static and molecular dynamics study of 4-styrylpyridine. ChemPhysChem 8(9):1402–1416. CrossRefGoogle Scholar
  78. Létard J-F, Guionneau P, Goux-Capes L (2004) Towards spin crossover applications. In: Spin crossover in transition metal compounds III. Springer, pp 221–249.
  79. Létard J-F, Guionneau P, Nguyen O, Costa JS, Marcén S, Chastanet G, Marchivie M, Capes L (2005) A guideline to the design of molecular-based materials with long-lived photomagnetic lifetimes. Chem Eur J 11:4582. CrossRefGoogle Scholar
  80. Linares J, Codjovi E, Garcia Y (2012) Pressure and temperature spin crossover sensors with optical detection. Sensors (Basel) 12(4):4479–4492. CrossRefGoogle Scholar
  81. Merino E, Ribagorda M (2012) Control over molecular motion using the cistrans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090. CrossRefGoogle Scholar
  82. Michl J (1990) Photochromism by orientation. Stud Org Chem 40:919–929Google Scholar
  83. Milek M, Heinemann FW, Khusniyarov MM (2013) Spin crossover meets diarylethenes: efficient photoswitching of magnetic properties in solution at room temperature. Inorg Chem 52(19):11585–11592. CrossRefGoogle Scholar
  84. Moliner N, Muñoz MC, Létard S, Létard J-F, Solans X, Burriel R, Castro M, Kahn O, Real JA (1999) Spin-crossover in the [Fe(abpt)2(NCX)2] (X = S, Se) system: structural, magnetic, calorimetric and photomagnetic studies. Inorg Chim Acta 291(1–2):279–288. CrossRefGoogle Scholar
  85. Nakano K, Suemura N, Yoneda K, Kawata S, Kaizaki S (2005) Substituent effect of the coordinated pyridine in a series of pyrazolato bridged dinuclear diiron(II) complexes on the spin-crossover behavior. Dalton Trans 4:740–743. CrossRefGoogle Scholar
  86. Nemec I, Herchel R, Trávníček Z, Šilha T (2016) Field-induced slow relaxation of magnetization in dinuclear and trinuclear Co III···Mn III complexes. RSC Adv 6(4):3074–3083. CrossRefGoogle Scholar
  87. Nihei M, Suzuki Y, Kimura N, Kera Y, Oshio H (2013) Bidirectional photomagnetic conversions in a spin-crossover complex with a diarylethene moiety. Chem A Eur J 19(22):6946–6949. CrossRefGoogle Scholar
  88. Park J, Yuan D, Pham KT, Li J-R, Yakovenko A, Zhou H-C (2012) Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J Am Chem Soc 134(1):99–102. CrossRefGoogle Scholar
  89. Ragon F, Yaksi K, Sciortino NF, Chastanet G, Létard J-F, D’Alessandro DM, Kepert CJ, Neville SM (2014) Thermal spin crossover behaviour of two-dimensional hofmann-type coordination polymers incorporating photoactive ligands. Aust J Chem 67(11):1563–1573. CrossRefGoogle Scholar
  90. Rau H (1973) Spectroscopic properties of organic azo compounds. Angew Chem Int Ed Engl 12(3):224–235. CrossRefGoogle Scholar
  91. Real JA, Gaspar AB, Niel V, Muñoz MC (2003) Communication between iron(II) building blocks in cooperative spin transition phenomena. Coord Chem Rev 236(1–2):121–141. CrossRefGoogle Scholar
  92. Real JA, Gaspar AB, Munoz MC (2005) Thermal, pressure and light switchable spin-crossover materials. Dalton Trans 12:2062–2079CrossRefGoogle Scholar
  93. Rösner B, Milek M, Witt A, Gobaut B, Torelli P, Fink RH, Khusniyarov MM (2015) Reversible photoswitching of a spin-crossover molecular complex in the solid state at room temperature. Angew Chem Int Ed 54(44):12976–12980. CrossRefGoogle Scholar
  94. Roux C, Zarembowitch J, Gallois B, Granier T, Claude R (1994) Toward ligand-driven light-induced spin changing. Influence of the configuration of 4 styrylpyridine (stpy) on the magnetic properties of FeII(stpy)4(NCS)2 Complexes. crystal structures of the spin-crossover species Fe(trans-stpy)4(NCS)2 and of the high-spin species Fe(cis-stpy)4(NCS)2. Inorg Chem 33(10):2273–2279. CrossRefGoogle Scholar
  95. Šalitroš I, Pavlik J (2017) Light-induced excited spin state trapping. In: Wang Z (eds) Encyclopedia of physical organic chemistry. Wiley, Online ISBN: 9781118468586.
  96. Salitros I, Madhu NT, Boca R, Pavlik J (2009) Room-temperature spin-transition iron compounds. Monatsh Chem. 140:695–733. CrossRefGoogle Scholar
  97. Salitros I, Fuhr O, Eichhofer A, Kruk R, Pavlik J, Dlhan L, Boca R, Ruben M (2012) The interplay of iron(II) spin transition and polymorphism. Dalton Trans 41(17):5163–5171. CrossRefGoogle Scholar
  98. Salitros I, Pogany L, Ruben M, Boca R, Linert W (2014) Polymorphism dependent light induced spin transition. Dalton Trans 43(44):16584–16587. CrossRefGoogle Scholar
  99. Salitros I, Fuhr O, Gál M, Valášek M, Ruben M (2017) Photoisomerisation of bis(tridentate) 2,6-bis(1H-pyrazol-1-yl)pyridine ligands exhibiting a multi-anthracene skeleton. Chem Eur J 23(42):10100–10109. CrossRefGoogle Scholar
  100. Šalitroš I, Madhu NT, Boča R, Pavlik J, Ruben M (2009) Room-temperature spin-transition iron compounds. Monatshefte für Chemie Chem Mon 140(7):695–733. CrossRefGoogle Scholar
  101. Sams JR, Tsin TB (1976) 5T2g-1A1g spin crossover in tris[2-(2′-pyridyl)benzimidazole]iron(II) complexes. Inorg Chem 15(7):1544–1550. CrossRefGoogle Scholar
  102. Sams JR, Scott JC, Tsin TB (1973) Tris [2-(2′-pyridyl)benzimidazole]iron(II) complexes. Some new examples of 5T2-1A1 spin equilibria. Chem Phys Lett 18(3):451–453. CrossRefGoogle Scholar
  103. Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40(6):3336–3355. CrossRefGoogle Scholar
  104. Sato O (2012) Switchable molecular magnets. Proc Jpn Acad Ser B Phys Biol Sci 88(6):213–225. CrossRefGoogle Scholar
  105. Senechal-David K, Zaman N, Walko M, Halza E, Riviere E, Guillot R, Feringa BL, Boillot ML (2008) Combining organic photochromism with inorganic paramagnetism-optical tuning of the iron(II) electronic structure. Dalton Trans 14:1932–1936. CrossRefGoogle Scholar
  106. Sheu C-F, Chen S-M, Wang S-C, Lee G-H, Liu Y-H, Wang Y (2009) The commensurate modulated structure of the metastable state in spin crossover complex [Fe(abpt)2(NCS)2]. Chem Commun 48:7512–7514. CrossRefGoogle Scholar
  107. Sheu CF, Shih CH, Sugimoto K, Cheng BM, Takata M, Wang Y (2012) A long-lived photo-induced metastable state of linkage isomerization accompanied with a spin transition. Chem Commun (Camb) 48(46):5715–5717. CrossRefGoogle Scholar
  108. Shores MP, Klug CM, Fiedler SR (2013) Spin-state switching in solution. In: Spin-crossover materials. Wiley, pp 281–301.
  109. Sour A, Boillot M-L, Rivière E, Lesot P (1999) First evidence of a photoinduced spin change in an FeIII complex using visible light at room temperature. Eur J Inorg Chem 12:2117–2119.;2-PGoogle Scholar
  110. Soyer H, Mingotaud C, Boillot ML, Delhaes P (1998) Spin crossover of a Langmuir–Blodgett film based on an amphiphilic iron(II) complex. Langmuir 14(20):5890–5895. CrossRefGoogle Scholar
  111. Soyer H, Dupart E, Mingotaud C, Gomez-Garcia CJ, Delhaes P (2000) Spin crossover phenomenon of a semi-fluorinated iron (II) complex organized in a Langmuir-Blodgett film. Colloids Surf A Physicochem Eng Aspects 171(1–3):275–282. CrossRefGoogle Scholar
  112. Sugahara A, Moriya K, Enomoto M, Okazawa A, Kojima N (2011) Study on the spin-crossover transition in [Fe (cis-/trans-stpy) 4 (X) 2](stpy: styrylpyridine, X: NCS, NCBH 3) under high pressure toward ligand-driven light-induced spin change. Polyhedron 30(18):3127–3130. CrossRefGoogle Scholar
  113. Takahashi K, Hasegawa Y, Sakamoto R, Nishikawa M, Kume S, Nishibori E, Nishihara H (2012) Solid-state ligand-driven light-induced spin change at ambient temperatures in bis(dipyrazolylstyrylpyridine)iron(II) complexes. Inorg Chem 51(9):5188–5198. CrossRefGoogle Scholar
  114. Tao J, Wei R-J, Huang R-B, Zheng L-S (2012) Polymorphism in spin-crossover systems. Chem Soc Rev 41(2):703–737. CrossRefGoogle Scholar
  115. Tian H, Zhang J (2016) Photochromic materials: preparation, properties and applications. Wiley, New YorkGoogle Scholar
  116. Tissot A, Bardeau J-F, Riviere E, Brisset F, Boillot M-L (2010a) Thermo- and photoswitchable spin-crossover nanoparticles of an iron(II) complex trapped in transparent silica thin films. Dalton Trans 39(33):7806–7812. CrossRefGoogle Scholar
  117. Tissot A, Boillot M-L, Pillet S, Codjovi E, Boukheddaden K, Lawson Daku LM (2010b) Unidirectional photoisomerization of styrylpyridine for switching the magnetic behavior of an iron(II) complex: a MLCT pathway in crystalline solids. J Phys Chem C 114(49):21715–21722. CrossRefGoogle Scholar
  118. Tuna F, Patron L, Rivière E, Boillot M-L (2000) Magnetic and spectral properties of two five-coordinate Lewis-base adducts of cobalt(II) Schiff-base complexes with a N3O2 ligand environment. Polyhedron 19(13):1643–1648. CrossRefGoogle Scholar
  119. Tweedle MF, Wilson LJ (1976) Variable spin iron(III) chelates with hexadentate ligands derived from triethylenetetramine and various salicylaldehydes. Synthesis, characterization, and solution state studies of a new 2T.dblarw. 6A spin equilibrium system. J Am Chem Soc 98(16):4824–4834. CrossRefGoogle Scholar
  120. van der Molen S, Liljeroth P (2010) Charge transport through molecular switches. J Phys Condens Matter 22(13):133001. CrossRefGoogle Scholar
  121. Waldeck DH (1991) Photoisomerization dynamics of stilbenes. Chem Rev 91(3):415–436. CrossRefGoogle Scholar
  122. Yager KG, Barrett CH (2006) Novel photo-switching using azobenzene functional materials. J Photochem Photobiol A 182(3):250–261. CrossRefGoogle Scholar
  123. Zarembowitch J, Roux C, Boillot M-L, Claude R, Itie J-P, Polian A, Bolte M (1993) Temperature-, pressure- and light-induced electronic spin conversions in transition metal complexes. Mol Cryst Liq Cryst 234(1):247–254. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of Chemical and Food TechnologySlovak University of Technology BratislavaBratislavaSlovakia

Personalised recommendations