Advertisement

Chemical Papers

, Volume 72, Issue 6, pp 1369–1378 | Cite as

Synthesis, anticancer evaluation and molecular docking studies of bis(indolyl) triazinones, Nortopsentin analogs

  • Reddymasu Sreenivasulu
  • Rudavath Durgesh
  • Surender Singh Jadav
  • Pombala Sujitha
  • C. Ganesh Kumar
  • Rudraraju Ramesh RajuEmail author
Original Paper

Abstract

A new series of bis indolyl tri keto diazo compounds and 3,5-bis(3′-indolyl) triazinones were designed and synthesized as anticancer agents. Their anticancer activity was screened in vitro towards four different human cancer cell lines like HeLa, MCF-7, MDA-MB-231 and A549 cell lines. Among them, compounds 17a and 17b showed potent cytotoxicity with inhibition (IC50) values of 4.6 and 1.3 µM on Human Cervical cancer cell line, respectively. The in silico simulation studies using ADT 1.5.6 tools revealed unique π–π interactions of indole ring of compound 17b with colchicines active site residue Tyr312 could be a valid reason behind its maximum potency when compared to remaining compounds in responsible of its higher activity.

Graphical Abstract

Keywords

Nortopsentins Triazinones Diazo tri keto compounds Anti-tumor activity Colchicine 

Notes

Acknowledgements

The authors will thankful to University Grants Commission, New Delhi, India for financial assistance in the form of Major Research Project F.No. 42-285/2013 (SR).

References

  1. Agarwal M, Singh V, Sharma SC, Sharma P, Ansari MdY, Jadav SS, Yasmin S, Sreenivasulu R, Hassan MdZ, Saini P, Ahsan MJ (2016) Design and synthesis of new 2,5-disubstituted-1,3,4-oxadiazole analogues as anticancer agents. Med Chem Res 25:2289–2303.  https://doi.org/10.1007/s00044-016-1672-1 CrossRefGoogle Scholar
  2. Ahsan MJ, Choudhary K, Jadav SS, Yasmin S, Ansari MY, Sreenivasulu R (2015) Synthesis, antiproliferative activity and molecular docking studies of curcumin, analogues bearing pyrazole ring. Med Chem Res 24:4166–4180.  https://doi.org/10.1007/s00044-015-1457-y CrossRefGoogle Scholar
  3. Alemany A, Fernandez-Alvarez E, Hernandez-Sanchez R (1975) Enzyme inhibitors. XI. Preparation and in vitro study of N-substituted 3-(N-methylindolyl)- and 3- (N-benzylindolyl)carbohydrazide as monoamineoxidase inhibitors. An Quim 71:88–93Google Scholar
  4. Alvarez M, Salas M, Joule JA (1991) Marine nitrogen—containing heterocyclic natural products – structures and syntheses of compounds containing indole units. Heterocycles 32:1391–1429.  https://doi.org/10.3987/rev-91-429 CrossRefGoogle Scholar
  5. Alvarez R, Puebla P, Diaz JF, Bento AC, Garcia-Navas R, DelaIglesia-Vicente J, Mollinedo F, Andreu JM, Medarde M, Pelaez R (2013) Endowing Indole-based Tubulin inhibitors with an anchor for derivatization: Highly potent 3-substituted Indolephenstatins and Indoleiso combretastatins. J Med Chem 56:2813–2827.  https://doi.org/10.1021/jm3015603 CrossRefPubMedGoogle Scholar
  6. Bao B, Sun Q, Yao X, Hong J, Lee C, Sim CJ, Jung JH (2005) Cytotoxic bis indole alkaloids from a marine sponge Spongosorites sp. J Nat Prod 68:711–715.  https://doi.org/10.1021/np049577a CrossRefPubMedGoogle Scholar
  7. Bokesch HR, Pannell LK, McKee TC, Boyd MR (2000) Coscinamides A, B and C, three new bis indole alkaloids from the marine sponge Coscinoderma sp. Tetrahedron Lett 41:6305–6308.  https://doi.org/10.1016/S0040-4039(00)01062-5 CrossRefGoogle Scholar
  8. Carbone A, Parrino B, Barraja P, Spano V, Cirrincione G, Diana P, Maier A, Kelter G, Fiebig HH (2013) Synthesis and antiproliferative activity of 2,5-bis(3′-indolyl)pyrrols, analogues of the marine alkaloid Nortopsentin. Mar Drugs 11:643–654.  https://doi.org/10.3390/md11030643 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carbone A, Parrino B, DiVita G, Attanzio A, Spano V, Montalbano A, Barraja P, Tesoriere L, Livrea MA, Diana P, Cirrincione G (2015) Synthesis and antiproliferative activity of thiazolyl-bis-pyrrolo[2,3-b]pyridines and indolyl-thiazolyl-pyrrolo[2,3-c]pyridines, Nortopsentin analogues. Mar Drugs 13:460–492.  https://doi.org/10.3390/md13010460 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Casapullo A, Bifulco G, Bruno I, Riccio R (2000) New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J Nat Prod 63:447–451.  https://doi.org/10.1021/np9903292 CrossRefPubMedGoogle Scholar
  11. Diana P, Carbone A, Barraja P, Martorana A, Gia O, DallaVia L (2007a) 3,5-Bis(3′- indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: synthesis and antitumor properties. Bioorg Med Chem Lett 17:6134–6137.  https://doi.org/10.1016/j.bmcl.2007.09.042 CrossRefPubMedGoogle Scholar
  12. Diana P, Carbone A, Barraja P, Montalbano A, Martorana A, Dattolo G, Gia O, Dallavia L, Cirrincione G (2007b) Synthesis and antitumor properties of 2,5-bis(3′- indolyl) thiophenes: Analogues of marine alkaloid nortopsentin. Bioorg Med Chem Lett 17:2342–2346.  https://doi.org/10.1016/j.bmcl.2007.01.065 CrossRefPubMedGoogle Scholar
  13. Diana P, Carbone A, Barraja P, Kelter HH, Fiebig G, Cirrincione G (2010) Synthesis and antitumor activity of 2,5-bis(3′-indolyl)-furans and 3,5-bis(3′-indolyl)-isoxazoles, nortopsentin analogues. Bioorg Med Chem 18:4524–4529.  https://doi.org/10.1016/j.bmc.2010.04.061 CrossRefPubMedGoogle Scholar
  14. Diana P, Carbone A, Barraja P, Montalbano A, Parrino B, Lopergolo A, Pennati M, Zaffaroni N, Cirrincione G (2011) Synthesis and antitumor activity of 3-(2-Phenyl-1,3-thiazol-4-yl)- 1H-indoles and 3-(2-Phenyl-1,3-thiazol-4-yl)-1H-7-azaindoles. ChemMedChem 6:1300–1309.  https://doi.org/10.1002/cmdc.201100078 CrossRefPubMedGoogle Scholar
  15. Diana P, Carbone A, Pennati M, Parrino B, Lopergolo A, Barraja P, Montalbano A, Spano V, Sbarra S, Doldi V, DeCesare M, Cirrincione G, Zaffaroni N (2013) Novel 1H- pyrrolo[2,3-b]pyridine derivatives nortopsenrin analogues: synthesis and antitumor activity in peritoneal mesothelioma experimental models. J Med Chem 56:7060–7072.  https://doi.org/10.1021/jm400842x CrossRefPubMedGoogle Scholar
  16. Garg NK, Stoltz BM (2005) Synthesis of bis(indole)-1,2,4-triazinones. Tetrahedron Lett 46:1997–2000.  https://doi.org/10.1016/j.tetlet.2005.01.162 CrossRefGoogle Scholar
  17. Gu XH, Wan XZ, Jiang B (1999) Syntheses and biological activities of bis(3- indolyl)thiazoles, analogues of marine bis(indole)alkaloid nortopsentins. Bioorg Med Chem Lett 9:569–572.  https://doi.org/10.1016/S0960-894X(99)00037-2 CrossRefPubMedGoogle Scholar
  18. Gul W, Hamann MT (2005) Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 78:442–453.  https://doi.org/10.1016/j.lfs.2005.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gunasekera SP, Kashman Y, Cross SS, Lui MS, Pomponi SA, Diaz MC (1988) Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family halichondriidae. Structural and synthetic studies. J Org Chem 53:5446–5453.  https://doi.org/10.1021/jo00258a009 CrossRefGoogle Scholar
  20. Hatti I, Sreenivasulu R, Jadav SS, Ahsan MJ, Raju RR (2015a) Synthesis and biological evaluation of 1,3,4-oxadiazole linked bis indole derivatives as anticancer agents. Monatsh Chem 146:1699–1705.  https://doi.org/10.1007/s00706-015-1448-1 CrossRefGoogle Scholar
  21. Hatti I, Sreenivasulu R, Jadav SS, Jayaprakash V, Kumar CG, Raju RR (2015b) Synthesis, cytotoxic activity and docking studies of new 4-aza podophyllotoxin derivatives. Med Chem Res 24:3305–3313.  https://doi.org/10.1007/s00044-015-1375-z CrossRefGoogle Scholar
  22. Hwang D-J, Wang J, Li W, Miller DD (2015) Structural optimization of indole derivatives acting at Colchicine binding site as potential anticancer agents. ACS Med Chem Lett 6:993–997.  https://doi.org/10.1021/acsmedchemlett.5b00208 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ishiyama H, Yoshizawa K, Kobayashi J (2012) Enantioselective total synthesis of eudistomidins G, H, and I. Tetrahedron 68:6186–6192.  https://doi.org/10.1016/j.tet.2012.05.071 CrossRefGoogle Scholar
  24. James PN, Snyder HR (1959) Indole-3-aldehyde. Org Synth 39:30.  https://doi.org/10.15227/orgsyn.039.0030 CrossRefGoogle Scholar
  25. Jiang X, Tiwari A, Thompson M, Chen Z, Cleary TP, Lee TBK (2001) A practical method for N-methylation of indoles using dimethyl carbonate. Org Process Res Dev 5:604–608.  https://doi.org/10.1021/op0102215 CrossRefGoogle Scholar
  26. Kawasaki I, Yamashita M, Ohta S (1996) Total synthesis of Nortopsentins A-D, marine alkaloids. Chem Pharm Bull 44:1831–1839.  https://doi.org/10.1248/cpb.44.1831 CrossRefGoogle Scholar
  27. Kortagere S, Ekins S, Welsh WJ (2008) Halogenated ligands and their interactions with amino acids: implications for structure–activity and structure–toxicity relationships. J Mol Graph Model 27:170–177.  https://doi.org/10.1016/j.jmgm.2008.04.001 CrossRefPubMedGoogle Scholar
  28. Kumar S, Mehndiratta S, Nepali K, Gupta MK, Koul S, Sharma PR, Saxena AK, Dhar KL (2013) Novel indole bearing combretastatin analogues as tubulin polymerization inhibitors. Org Med Chem Lett 3:1–13.  https://doi.org/10.1186/2191-2858-3-3 CrossRefGoogle Scholar
  29. Madhavi S, Sreenivasulu R, Ansari MdY, Ahsan MJ, Raju RR (2016) Synthesis, biological evaluation and molecular docking studies of Pyridine incorporated chalcone derivatives as anticancer agents. Lett Org Chem 13:682–692.  https://doi.org/10.2174/1570178613666161021105317 CrossRefGoogle Scholar
  30. Madhavi S, Sreenivasulu R, Jyotsna Y, Raju RR (2017a) Synthesis of Chalcone incorporated Quinazoline derivatives as anticancer agents. Saudi Pharm J 25:275–279.  https://doi.org/10.1016/j.jsps.2016.06.005 CrossRefPubMedGoogle Scholar
  31. Madhavi S, Sreenivasulu R, Raju RR (2017b) Synthesis and biological evaluation of oxadiazole incorporated ellipticine derivatives as anticancer agents. Monatsh Chem 148:933–938.  https://doi.org/10.1007/s00706-016-1790-y CrossRefGoogle Scholar
  32. Matter H, Nazare M, Güssregen S, Will DW, Schreuder H, Bauer A, Urmann M, Ritter K, Wagner M, Wehner V (2009) Evidence for C-Cl/C-Br…pi interactions as an important contribution to protein-ligand binding affinity. Angew Chem Int Ed Engl 48:2911–2916.  https://doi.org/10.1002/anie.200806219 CrossRefPubMedGoogle Scholar
  33. Mielczarek M, Devakaram RV, Ma C, Yang X, Kandemir H, Purwono B, Black DSTC, Griffith R, Lewis PJ, Kumar N (2014) Synthesis and biological activity of novel bisindole inhibitors of bacterial transcription initiation complex formation. Org Biomol Chem 12:2882–2894.  https://doi.org/10.1039/c4ob00460d CrossRefPubMedGoogle Scholar
  34. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  35. Papayan GL, Galstyan LS (1976) Indole derivatives. Amino esters of 1-benzyl indole-3-carboxylic acids. Arm Khim Zh 29:1062–1064Google Scholar
  36. Parrino B, Carbone A, DiVita G, Ciancimino C, Attanzio A, Spano V, Montalbano A, Barraja P, Tesoriere L, Livrea MA, Diana P, Cirrincione G (2015) 3-[4-(1H-Indol-3-yl)-1,3-thiazol- 2-yl]-1H-pyrrolo[2,3-b]pyridines, Nortopsentin analogues with antiproliferative activity 3-[4-(1H-Indol-3-yl)-1,3-thiazol-2-yl]-1H-pyrrolo[2,3-b]pyridines, Nortopsentin analogues with antiproliferative activity. Mar Drugs 13:1901–1924.  https://doi.org/10.3390/md13041901 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parrino B, Attanzio A, Spano V, Cascioferro S, Montalbano A, Barraja P, Tesoriere L, Diana P, Cirrincione G, Carbone A (2017) Synthesis, antitumor activity and CDK1 inhibition of new thiazole nortopsentin analogues. Eur J Med Chem 138:371–383.  https://doi.org/10.1016/j.ejmech.2017.06.052 CrossRefPubMedGoogle Scholar
  38. Reddy NB, Burra VR, Ravindranath LK, Sreenivasulu R, Kumar VN (2016a) Synthesis and biological evaluation of benzoxazole fused combretastatin derivatives as anticancer agents. Monatsh Chem 147:593–598.  https://doi.org/10.1007/s00706-016-1685-y CrossRefGoogle Scholar
  39. Reddy NB, Burra VR, Ravindranath LK, Kumar VN, Sreenivasulu R, Sadanandam P (2016b) Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents. Monatsh Chem 147:599–604.  https://doi.org/10.1007/s00706-016-1684-z CrossRefGoogle Scholar
  40. Sakem S, Sun HH (1991) Nortopsentins A, B and C. Cytotoxic and antifungal imidazolediylbis[indoles] from the sponge spongosorites ruetzleri. J Org Chem 56:4304–4307.  https://doi.org/10.1021/jo00013a044 CrossRefGoogle Scholar
  41. Shin J, Seo Y, Cho KW, Rho JR, Sim CJ (1999) New bis(indole) alkaloids of the topsentin class from the sponge Spongosorites genitrix. J Nat Prod 62:647–649.  https://doi.org/10.1021/np980507b CrossRefPubMedGoogle Scholar
  42. Spano V, Attanzio A, Cascioferro S, Carbone A, Montalbano A, Barraja P, Tesoriere L, Cirrincione G, Diana P, Parrino B (2016) Synthesis and antitumor activity of new thiazole Nortopsentin analogs. Mar Drugs 14:226.  https://doi.org/10.3390/md14120226 CrossRefPubMedCentralGoogle Scholar
  43. Sreenivasulu R, Sujitha P, Jadav SS, Ahsan MJ, Kumar CG, Raju RR (2017) Synthesis, antitumor evaluation and molecular docking studies of Indole–Indazolyl hydrazide–hydrazone derivatives. Monatsh Chem 148:305–314.  https://doi.org/10.1007/s00706-016-1750-6 CrossRefGoogle Scholar
  44. Sun HH, Pa G, Sakemi S, Gunasekera S, Kashman Y, Lui M, Burres N, McCarthy P (1990) Bis-indole imidazole compounds which are useful antitumor and antimicrobial agents. US Patent 4970226.Google Scholar
  45. Tunbridge GA, Oram J, Caggiano L (2013) Design, synthesis and antiproliferative activity of indole analogues of indanocine. Med Chem Comm 4:1452–1456.  https://doi.org/10.1039/C3MD00200D CrossRefGoogle Scholar
  46. Wang M, Gao M, Miller KD, Sledge GW, Hutchins GD, Zheng QH (2011) The first synthesis of [(11)C]SB-216763, a new potential PET agent for imaging of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett 21:245–249.  https://doi.org/10.1016/j.bmcl.2010.11.026 CrossRefPubMedGoogle Scholar
  47. Whiting AL, Hof F (2012) Binding trimethyllysine and other cationic guests in water with a series of indole-derived hosts: large differences in affinity from subtle changes in structure. Org Biomol Chem 10:6885–6892.  https://doi.org/10.1039/C2OB25882J CrossRefPubMedGoogle Scholar
  48. Xiong WN, Yang CG, Jiang B (2001) Synthesis of novel analogues of marine indole = alkaloids: Mono(indolyl)-4-trifluoromethyl pyridines and Bis(indolyl)-4- trifluoromethyl pyridines as potential anticancer agents. Bioorg Med Chem 9:1773–1780.  https://doi.org/10.1016/S0968-0896(01)00070-0 CrossRefPubMedGoogle Scholar
  49. Yoo WJ, Capdevila MG, Du X, Kobayashi S (2012) Base-mediated carboxylation of unprotected indole derivatives with carbon dioxide. Org Lett 14:5326–5329.  https://doi.org/10.1021/ol3025082 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Reddymasu Sreenivasulu
    • 1
  • Rudavath Durgesh
    • 1
  • Surender Singh Jadav
    • 2
  • Pombala Sujitha
    • 3
  • C. Ganesh Kumar
    • 3
  • Rudraraju Ramesh Raju
    • 1
    Email author
  1. 1.Department of ChemistryAcharya Nagarjuna UniversityGunturIndia
  2. 2.Department of Pharmaceutical Sciences and TechnologyBirla Institute of Technology, MesraRanchiIndia
  3. 3.Medicinal Chemistry and Pharmacology DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations