Advertisement

Chemical Papers

, Volume 72, Issue 4, pp 947–954 | Cite as

Cyclopentyl methyl ether, tert-amyl methyl ether and tert-butyl methyl ether: density, dynamic viscosity, surface tension and refractive index

  • Alena Randová
  • Ondřej Vopička
  • Lidmila Bartovská
  • Karel Friess
Original Paper
  • 66 Downloads

Abstract

This work presents densities, dynamic viscosities, surface tensions, and refractive indices of three methyl ethereal solvents: cyclopentyl methyl ether (CPME), tert-amyl methyl ether (TAME), and tert-butyl methyl ether (MTBE). CPME and TAME were chosen as methyl alternatives of the common but environmentally problematic MTBE. The highest density, viscosity, surface tension, and refractive index were observed for CPME and the lowest for MTBE. The results are in good agreement with other authors’ data. Based on the experiments, the critical temperature and the critical pressure of CPME were estimated. The parachor, molar refraction, and critical compressibility factor were calculated from experimental data. Parameterisations of the experimental data using corresponding correlative models are presented.

Graphical abstract

Keywords

CPME TAME Density Viscosity Surface tension Refractive index 

Notes

Acknowledgements

A. Randová and O. Vopička acknowledge the financial support obtained from the Czech Science Foundation within the Grant Project 13-32829P.

References

  1. Adamson AW, Gast AP (1997) Physical chemistry of surfaces. John Wiley and Sons, Inc., 6th edn. New YorkGoogle Scholar
  2. Antón V, Muñoz-Embid J, Artal M, Lafuente C (2016) Experimental and modeled volumetric behavior of linear and branched ethers. Fluid Phase Equilib 417:7–18.  https://doi.org/10.1016/j.fluid.2016.02.009 CrossRefGoogle Scholar
  3. Bikerman JJ (1958) Surface chemistry, 2nd edn. Academic Press Inc, New YorkGoogle Scholar
  4. Bouzas A, Burguet MC, Montón JB, Muñoz R (2000) Densities, viscosities, and refractive indices of the binary systems methyl tert-butyl ether + 2-methylpentane, + 3-methylpentane, + 2,3-dimethylpentane, and + 2,2,4-trimethylpentane at 298.15 K. J Chem Eng Data 45:331–333.  https://doi.org/10.1021/je9902793 CrossRefGoogle Scholar
  5. Červenková I, Boublík T (1984) Vapor pressures, refractive indexes, and densities at 20.0 °C, and vapor-liquid equilibrium at 101.325 kPa, in the tert-amyl methyl ether-methanol system. J Chem Eng Data 29:425–427.  https://doi.org/10.1021/je00038a017 CrossRefGoogle Scholar
  6. Clará RA, Gómez Marigliano AC, Morales D, Sólimo HN (2010) Density, Viscosity, vapor–liquid equilibrium, and excess molar enthalpy of [chloroform + methyl tert-butyl ether]. J Chem Eng Data 55:5862–5867.  https://doi.org/10.1021/je100821g CrossRefGoogle Scholar
  7. da Andrade ENC (1930) The viscosity of liquids. Nature 125:309–310.  https://doi.org/10.1038/125309b0 CrossRefGoogle Scholar
  8. da Andrade ENC (1934) Theory of viscosity of liquids. Phil Mag 17:497–511CrossRefGoogle Scholar
  9. De Guzman J (1913) Relation between fluidity and heat of fusion. Anales Soc españ fís quím 11:353–362Google Scholar
  10. Domańska U, Żołek-Tryznowska Z (2010) Measurements of the density and viscosity of binary mixtures of (hyper-branched polymer, BH2004 + 1-butanol, or 1-hexanol, or 1-octanol, or methyl tert-butyl ether). J Chem Thermodyn 42:651–658.  https://doi.org/10.1016/j.jct.2009.12.005 CrossRefGoogle Scholar
  11. Dutt NVK, Prasad DHL (1996) Atomic and structural contributions to molar refraction and extension to mixtures. Phys Chem Liq 33:171–179.  https://doi.org/10.1080/00319109608039818 CrossRefGoogle Scholar
  12. Eisenberg H (1965) Equation for the refractive index of water. J Chem Phys 43:3887–3892.  https://doi.org/10.1063/1.1696616 CrossRefGoogle Scholar
  13. Exner O (1967) Additive physical properties. III.*re-examination of the additive character of parachor. Collect Czech Chem Commun 32:24–55.  https://doi.org/10.1135/cccc19811930 CrossRefGoogle Scholar
  14. Ferguson A (1940) Relations between thermo-physical properties. Proc Phys Soc 52:759–763.  https://doi.org/10.1088/0959-5309/52/6/303 CrossRefGoogle Scholar
  15. Gharagheizi F, Eslamimanesh A, Sattari M, Mohammadi AH, Richon D (2013) Development of corresponding states model for estimation of the surface tension of chemical compounds. AIChE J 59:613–621.  https://doi.org/10.1002/aic.13824 CrossRefGoogle Scholar
  16. Gonzalez-Olmos R, Iglesias M, Santos BMRP, Mattedi S (2008) Thermodynamics of oxygenate fuel additives as a function of temperature. Phys Chem Liq 46(3):223–237.  https://doi.org/10.1080/00319100701660411 CrossRefGoogle Scholar
  17. Guggenheim EA (1945) The principle of corresponding states. J Chem Phys 13:253–261.  https://doi.org/10.1063/1.1724033 CrossRefGoogle Scholar
  18. Guldberg CM (1890) Über die Gesetze der Molekularvolumen und der Siedepunkte. Z Phys Chem 5:374–382Google Scholar
  19. Handali A, Kianersi S (2016) Measurement of volumetric and viscometric properties of binary mixtures of methyl tert-butyl ether (MTBE) + 1-alcohol from 293.15 to 308.15 K and at atmospheric pressure. Phys Chem Res 4:673–691.  https://doi.org/10.22036/pcr.2016.31938 Google Scholar
  20. Jasper JJ (1972) The surface tension of pure liquid compounds. J Phys Chem Ref Data 1:841–1009.  https://doi.org/10.1063/1.3253106 CrossRefGoogle Scholar
  21. Koenen R, Püttmann W (2005) Ersatz von MTBE durch ETBE: Ein Vorteil für den Grundwasserschutz? Grundwasser 4:227–236.  https://doi.org/10.1007/s00767-005-0104-9 CrossRefGoogle Scholar
  22. Kudchadker AP, Ambrose D, Tsonopoulos C (2001) Vapor–liquid critical properties of elements and compounds. 7. Oxygen compounds other than alkanols and cycloalkanols. J Chem Eng Data 46:457–479.  https://doi.org/10.1021/je0001680 CrossRefGoogle Scholar
  23. Landaverde-Cortes DC, Estrada-Baltazar A, Iglesias-Silva GA, Hall KR (2007) Densities and viscosities of MTBE + heptane or octane at p = 0.1 MPa from (273.15 to 363.15) K. J Chem Eng Data 52:1226–1232.  https://doi.org/10.1021/je600554h CrossRefGoogle Scholar
  24. Latini G, Cocci Grifoni R, Passerini G (2006) Transport properties of organic liquids. WIT Press, AshurstGoogle Scholar
  25. Lielmezs J, Herrick TA (1986) New surface tension correlation for liquids. Chem Eng J 32:165–169.  https://doi.org/10.1016/0300-9467(86)80004-1 CrossRefGoogle Scholar
  26. Little CJ, Dale AD, Whatley JA (1979) Methyl tert-butyl ether: a new chromatographic eluent. J Chromatogr A 169:381–385.  https://doi.org/10.1016/0021-9673(75)85064-3 CrossRefGoogle Scholar
  27. Lorentz HA (1880) Über die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes der Körperdichte. Ann Physik Chem Wied 9:641–665CrossRefGoogle Scholar
  28. Lorenz LV (1880) Über die Refractionsconstante. Ann Physik Chem Wied 11:70–103CrossRefGoogle Scholar
  29. MacLeod DB (1923) On a relation between surface tension and density. Trans Faraday Soc 19:38–41.  https://doi.org/10.1039/TF9231900038 CrossRefGoogle Scholar
  30. Mascato E, Mariano A, Piñeiro MM, Legido JL, Paz Andrade MI (2007) Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane). J Chem Thermodyn 39:1247–1256.  https://doi.org/10.1016/j.jct.2007.02.002 CrossRefGoogle Scholar
  31. Master ZR, Vaid ZS, More UU, Malek NI (2016) Molecular interaction study through experimental and theoretical volumetric, transport and refractive properties of N-ethylaniline with aryl and alkyl ethers at several temperatures. Phys Chem Liq 54(2):223–244.  https://doi.org/10.1080/00319104.2015.1074047 CrossRefGoogle Scholar
  32. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146.  https://doi.org/10.1194/jlr.D700041-JLR200 CrossRefGoogle Scholar
  33. Mejía A, Segura H, Cartes M, Cifuentes L, Flores M (2008) Phase equilibria and interfacial tensions in the systems methyl tert-butyl ether + acetone + cyclohexane, methyl tert-butyl ether + acetone and methyl tert-butyl ether + cyclohexane. Fluid Phase Equilib 273:68–77.  https://doi.org/10.1016/j.fluid.2008.08.012 CrossRefGoogle Scholar
  34. Mejía A, Segura H, Cartes M (2011) Vapor liquid equilibria and interfacial tensions of the system ethanol + 2-methoxy-2-methylbutane. J Chem Eng Data 56:3142–3148.  https://doi.org/10.1021/je200215d CrossRefGoogle Scholar
  35. Montaño D, Bandrés I, Ballesteros LM, Lafuente C, Royo FM (2011) Study of the surface tensions of binary mixtures of isomeric chlorobutanes with methyl tert-butyl ether. J Sol Chem 40:1173–1186.  https://doi.org/10.1007/s10953-011-9717-z CrossRefGoogle Scholar
  36. Montaño D, Artigas H, Royo FM, Lafuente C (2013) Experimental and predicted viscosities of binary mixtures containing chlorinated and oxygenated compounds. Int J Thermophys 34:34–46.  https://doi.org/10.1007/s10765-012-1371-1 CrossRefGoogle Scholar
  37. Oh J-H, Park S-J (1997) Isothermal vapor–liquid equilibria of 2-methoxy-2-methylbutane (TAME) + n-alcohol (C1–C4) mixtures at 323.15 and 333.15 K. J Chem Eng Data 42:517–522.  https://doi.org/10.1021/je960302+ CrossRefGoogle Scholar
  38. Ouyang G, Lu G, Pan C, Yang Y, Huang Z, Kang B (2004) Excess molar volumes and surface tensions of xylene with isopropyl ether or methyl tert-butyl ether at 298.15 K. J Chem Eng Data 49:732–734.  https://doi.org/10.1021/je034279l CrossRefGoogle Scholar
  39. Pal A, Dass G (1999) Excess molar volumes and viscosities for binary liquid mixtures of methyl tert-butyl ether and of tert-amyl methyl ether with methanol, 1-propanol, and 1-pentanol at 298.15 K. J Chem Eng Data 44:1325–1329.  https://doi.org/10.1021/je990085n CrossRefGoogle Scholar
  40. Poling BE, Prausnitz JM, O’Connell JP (2004) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  41. Rackett HG (1970) Equation of State for Saturated Liquids. J Chem Eng Data 15:514–517.  https://doi.org/10.1021/je60047a012 CrossRefGoogle Scholar
  42. Rodríguez A, Canosa J, Tojo J (1999) Binary mixture properties of methyl tert-butyl ether with hexane or heptane or octane or nonane from 288.15 K to 298.15 K. J Chem Eng Data 44:666–671.  https://doi.org/10.1021/je990009k CrossRefGoogle Scholar
  43. Sánchez OJ, Cardona CA (2008) Review: trends in biotechnological production of fuel ethanol from different feedstock. Biores Technol 99:5270–5295.  https://doi.org/10.1016/j.biortech.2007.11.013 CrossRefGoogle Scholar
  44. Součková M, Klomfar J, Pátek J (2008) Measurement and correlation of the surface tension-temperature relation for methanol. J Chem Eng Data 53:2233–2236.  https://doi.org/10.1021/je8003468 CrossRefGoogle Scholar
  45. Sugden S (1924) CXLII—a relation between surface tension, density, and chemical composition. J Chem Soc Trans 125:1177–1189.  https://doi.org/10.1039/CT9242501177 CrossRefGoogle Scholar
  46. Viswanathan S, Anand Rao M, Prasad DHL (2000) Densities and viscosities of binary liquid mixtures of anisole or methyl tert-butyl ether with benzene, chlorobenzene, benzonitrile, and nitrobenzene. J Chem Eng Data 45:764–770.  https://doi.org/10.1021/je990288b CrossRefGoogle Scholar
  47. Vogel AI (1948) Physical properties and chemical constitution. Part XIX. Five-membered and six-membered carbon rings. J Chem Soc 1809–1813.  https://doi.org/10.1039/JR9480001809
  48. Wang X, Pan J, Wu J, Liu Z (2006) Surface tension of dimethoxymethane and methyl tert-butyl ether. J Chem Eng Data 51:1394–1397.  https://doi.org/10.1021/je060097q CrossRefGoogle Scholar
  49. Watanabe K, Yamagiwa N, Torisawa Y (2007) Cyclopentyl methyl ether as a new and alternative process solvent. Org Process Res Dev 11:251–258.  https://doi.org/10.1021/op0680136 CrossRefGoogle Scholar
  50. Winterberg M, Schulte-Körne E, Peters U, Nierlich F (2010) Methyl Tert-Butyl Ether. Ullmann’s Encycl Indus Chem.  https://doi.org/10.1002/14356007.a16_543.pub2 Google Scholar
  51. Wisniak J, Peralta RD, Infante R, Cortez G (2005) Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K. J Chem Thermodyn 37:729–736.  https://doi.org/10.1016/j.jct.2004.11.012 CrossRefGoogle Scholar
  52. DIPPR (Design Institute for Physical Properties), https://app.knovel.com/web/toc.v/cid:kpDIPPRPF7/viewerType:toc/root_slug:dippr-project-801-full. Accessed 10 Nov 2017
  53. Yaws CL (2009) Thermophysical properties of chemicals and hydrocarbons, William Andrew. ISBN 10: 0815515960/ISBN 13: 9780815515968Google Scholar
  54. Zhang H (2015) Measurements and comparative study of ternary liquid–liquid equilibria for water + acrylic acid + cyclopentyl methyl ether at (293.15, 303.15, and 313.15) K and 100.249 kPa. J Chem Eng Data 60:1371–1376.  https://doi.org/10.1021/je501085y CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Alena Randová
    • 1
  • Ondřej Vopička
    • 1
  • Lidmila Bartovská
    • 1
  • Karel Friess
    • 1
  1. 1.Department of Physical ChemistryUniversity of Chemistry and Technology, PraguePrague 6Czech Republic

Personalised recommendations