Advertisement

Chemical Papers

, Volume 72, Issue 3, pp 629–641 | Cite as

Gold-doped ceria–lanthana solid solution: surfactant assisted preparation, nanostructural and catalytic properties

  • Pramila Patil
  • Selvakumar Dhanasingh
  • Nallaperumal Shunmuga Kumar
Original Paper
  • 63 Downloads

Abstract

The effect of preparation methods on the formation of gold doped ceria–lanthana solid solution (Au-CLSS) nanoparticles (NPs) was studied. The nanoparticles were prepared by surfactant assisted precipitation methods viz., co-precipitation (CP) and deposition precipitation (DP) in the presence of cetyltrimethylammonium bromide (CTAB). The as prepared nanoparticles were characterized using BET, FESEM, EDS, Raman, TEM, XRD and UV–Vis. spectroscopic techniques to investigate the preferred method for the preparation of nanoparticles for catalytic applications. The cubic fluorite phase formation of nanoparticles was confirmed by XRD analysis and the average crystallite size was calculated to be around 7–10 nm. Surface area studies revealed that the NPs formed by CTAB assisted method have higher surface area. The morphology of NPs formed by both methods was flaky. Raman studies confirmed that the samples prepared by DP method generated increased oxygen vacancies than those prepared by CP method. In the present work, catalytic oxidation efficiency of the catalysts studied with toluene vapours showed maximum efficiency for Au-CLSS at low temperatures (450 K) as compared to undoped CLSS.

Keywords

Ceria–lanthana Nanoparticles Catalyst Volatile organic compound 

Notes

Acknowledgements

The authors would like to express their gratitude to Dr. U. K. Singh, Director, DEBEL, Bangalore, for providing experimental facilities; Dr. T. N Guru Row, Mr. Praveen B Managutti, Dr. Sanchita Sil, IISc, Bangalore, for XRD and TEM; Mr. Venkatesha, Chemistry Research Centre, BIT, Bangalore, for BET analysis; Dr. Yogendra Kumar for UV–Vis analysis, Mr. K. Harish and Mr. S. P. Pavan, DEBEL, Bangalore. for catalytic experiments. Dr. Ashutosh Abhyankar, DIAT for FESEM analysis (under DRDO-DIAT Program on nanomaterials No: ERIP/ER/1003883/M/01/908/2012/D(R&D)/1416). The authors also thank Dr. Umesh T Nakate, Chonbuk National University, Jeonju, South Korea for his valuable inputs on XRD analysis. One of the authors, Pramila Patil would like to thank DRDO, Ministry of Defence, Government of India, for research fellowship.

Supplementary material

11696_2017_324_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2811 kb)

References

  1. Anandan S, Nalenthiran P, Thangavel S, Shu-Han H, Lee G (2012) Investigation on photocatalytic potential of Au–Ta2O5 semiconductor nanoparticle by degrading methyl orange in aqueous solution by illuminating with visible light. Catal Sci Technol 2(12):2502–2507. doi: 10.1039/C2CY20393F CrossRefGoogle Scholar
  2. Andersson SLT (1986) Reaction networks in the catalytic vapor-phase oxidation of toluene and xylenes. J Catal 98(1):138–149. doi: 10.1016/0021-9517(86)90304-0 CrossRefGoogle Scholar
  3. Andreeva D, Idakiev V, Tabakova T, Ilieva L, Falaras P, Bourlinos A, Travlos A (2002) Low-temperature water–gas shift reaction over Au/CeO2 catalysts. Catal Today 72:51–57. doi: 10.1016/S0920-5861(01)00477-1 CrossRefGoogle Scholar
  4. Antunes A, Ribeiro MF, Silva JM, Ribeiro FR, Magnoux P, Guisnet M (2001) Catalytic oxidation of toluene over CuNaHY zeolites: coke formation and removal. Appl Catal B Environ 33(2):149–164. doi: 10.1016/S0926-3373(01)00174-6 CrossRefGoogle Scholar
  5. Bumajdad A, Eastoe J, Mathew A (2009) Cerium oxide nanoparticles prepared in self-assembled systems. Adv Colloid Interface 147:56–66. doi: 10.1016/j.cis.2008.10.004 CrossRefGoogle Scholar
  6. Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water–gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B 15(1):107–114. doi: 10.1016/S0926-3373(97)00040-4 CrossRefGoogle Scholar
  7. Carneiro JT, Savenije TJ, Mul G (2009) Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts. Phys Chem Chem Phys 11(15):2708–2714. doi: 10.1039/B820425J CrossRefGoogle Scholar
  8. Chu X, Chung WI, Schmidt LD (1993) Sintering of Sol-Gel prepared submicrometer particles studied by transmission electron microscopy. J Am Ceram Soc 76(8):2115–2118. doi: 10.1111/j.1151-2916.1993.tb08344.x CrossRefGoogle Scholar
  9. Cullity BD, Stock R (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, HoustonGoogle Scholar
  10. Dhanasingh S, Nallasamy D, Padmanapan S, Padaki V (2014) Cetyltrimethylammonium bromide and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method. Chem Pap 68(8):1079–1086. doi: 10.2478/s11696-014-0543-9 CrossRefGoogle Scholar
  11. Fu Q, Weber A, Stephanopoulos F (2001) Nanostructured Au–CeO2 catalysts for low-temperature water–gas shift. Catal Lett 77(1–3):87–95. doi: 10.1023/A:1012666128812 CrossRefGoogle Scholar
  12. Fu Q, Kudriavtseva S, Saltsburg H, Stephanopoulos MF (2003) Gold–ceria catalysts for low-temperature water gas shift reaction. Chem Eng J 93:41–53. doi: 10.1016/S1385-8947(02)00107-9 CrossRefGoogle Scholar
  13. Haruta M (1997) Size and support dependency in the catalysis of gold. Catal Today 36(1):153–166. doi: 10.1016/S0920-5861(96)00208-8 CrossRefGoogle Scholar
  14. Haruta M (2004) Nanoparticulate gold catalysts for low-temperature CO oxidation. J New Mater Electrochem Syst 7:163–172. doi: 10.1002/chin.200448226 Google Scholar
  15. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309. doi: 10.1016/0021-9517(89)90034-1 CrossRefGoogle Scholar
  16. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144(1):175–192. doi: 10.1006/jcat.1993.1322 CrossRefGoogle Scholar
  17. Hernandez NC, Grau-Crespo R, de Leeuw NH, Sanz JF (2009) Electronic charge transfer between ceria surfaces and gold adatoms: a GGA + U investigation. Phys Chem Chem Phys 26:5246–5252. doi: 10.1039/B820373C CrossRefGoogle Scholar
  18. Janoš P, Hladík T, Kormunda Martin, Ederer Jakub, Šťastný Martin (2014) Thermal treatment of cerium oxide and its properties: adsorption ability versus degradation efficiency. Adv Mater Sci Eng 2014:1–12. doi: 10.1155/2014/706041 Google Scholar
  19. Kalamaras CM, Petallidou KC, Efstathiou AM (2013) The effect of La3+ doping of CeO2 support on the water–gas shift reaction mechanism and kinetics over Pt/Ce1−xLaxO2−δ. Appl Catal B 136–137:225–238. doi: 10.1016/j.apcatb.2013.02.003 CrossRefGoogle Scholar
  20. Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409(15):2987–2992. doi: 10.1016/j.scitotenv.2011.04.019 CrossRefGoogle Scholar
  21. Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A (2013) Nanocrystalline Ce1−xSmxO2−δ (x = 0.4) solid solutions: structural characterization versus CO oxidation. RSC Adv 3(21):7953–7962. doi: 10.1039/C3RA23491F CrossRefGoogle Scholar
  22. Laguna OH, Sarria FR, Centeno MA, Odriozola JA (2010) Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX). J Catal 276(2):360–370. doi: 10.1016/j.jcat.2010.09.027 CrossRefGoogle Scholar
  23. Laosiripojana N, Sutthisripok W, Assabumrungrat S (2007) Reactivity of high surface area CeO2 synthesized by surfactant-assisted method to ethanol decomposition with and without steam. Chem Eng J 127(1):31–38. doi: 10.1016/j.cej.2006.09.020 CrossRefGoogle Scholar
  24. Li L, Chen Y (2005) Preparation of nanometer scale CeO2 particles via a complex thermo-decomposition method. Mater Sci Eng A 406(1):180–185. doi: 10.1016/j.msea.2005.06.046 CrossRefGoogle Scholar
  25. Li Y, Fu Q, StephanopoulosM F (2000) Low-temperature water–gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts. Appl Catal B 27(3):179–191. doi: 10.1016/S0926-3373(00),00147-8 CrossRefGoogle Scholar
  26. Li L, Li X, Li G, Hiroshi I (2001) Solid solubility and transport properties of Ce1−xNdxO2–δ nanocrystalline solid solutions by a sol-gel route. J Mater Res 16(11):3207–3213. doi: 10.1557/JMR.2001.0442 CrossRefGoogle Scholar
  27. Li WB, Wang JX, Gong H (2009) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148(1):81–87. doi: 10.1016/j.cattod.2009.03.007 CrossRefGoogle Scholar
  28. Liotta L, Carlo GD, Longo A, Pantaleo G, Venezia AM (2008) Support effect on the catalytic performance of Au/Co3O4–CeO2 catalysts for CO and CH4 oxidation. Catal Today 139(3):174–179. doi: 10.1016/j.cattod.2008.04.025 CrossRefGoogle Scholar
  29. Manzoli M, Avgouropoulos G, Tabakova T, Papavasiliou J, Ioannides T, Boccuzzi T (2008) Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts. Catal Today 138(3):239–243. doi: 10.1016/j.cattod.2008.05.001 CrossRefGoogle Scholar
  30. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3:489–492. doi: 10.1038/NCHEM.1048 CrossRefGoogle Scholar
  31. Nakate UT, Bulakhe RN, Lokhande CD, Kale SN (2016a) Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl Surf Sci 371:224–230. doi: 10.1016/j.apsusc.2016.02.196 CrossRefGoogle Scholar
  32. Nakate UT, Patil P, Bulakhe RN, Lokhande CD, Kale SN, Naushad Mu, Mane RS (2016b) Sprayed zinc oxide films: ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response. J Colloid Interface Sci 480:109–117. doi: 10.1016/j.jcis.2016.07.010 CrossRefGoogle Scholar
  33. Oh H, Kim S (2007) Synthesis of ceria nanoparticles by flame electrospray pyrolysis. J Aerosol Sci 38(12):1185–1196. doi: 10.1016/j.jaerosci.2007.09.007 CrossRefGoogle Scholar
  34. Ou HH, Lo SL (2007) Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. J Mol Catal A Chem 275(1):200–205. doi: 10.1016/j.molcata.2007.05.044 CrossRefGoogle Scholar
  35. Patil P, Selvakumar D, Kumar NS (2016) Size controlled preparation and effect of sintering temperature on the structural properties of nanocrystalline ceria–lanthana solid solution. Mater Today Proc 3(6):1712–1717. doi: 10.1016/j.matpr.2016.04.064 CrossRefGoogle Scholar
  36. Petallidou KC, Efstathiou AM (2013) Low-temperature water–gas shift on Pt/Ce1−xLaxO2−δ: effect of Ce/La ratio. Appl Catal B 140:333–347. doi: 10.1016/j.apcatb.2013.04.007 CrossRefGoogle Scholar
  37. Petallidou KC, Kalamaras CM, Efstathiou AM (2014) The effect of La3+, Ti4+ and Zr4+ dopants on the mechanism of WGS on ceria-doped supported Pt catalysts. Catal Today 228:183–193. doi: 10.1016/j.cattod.2013.10.081 CrossRefGoogle Scholar
  38. Petallidou KC, Boghosian S, Efstathiou AM (2015) Low-temperature water–gas shift on Pt/Ce0.5La0.5O2−δ: effect of support synthesis method. Catal Today 242:153–167. doi: 10.1016/j.cattod.2014.06.042 CrossRefGoogle Scholar
  39. Reddy BM, Bharali P, Saikia P (2008) Structural characterization and catalytic activity of nanosized CexM1−xO2 (M = Zr and Hf) mixed oxides. J Phys Chem C 112:11729–11737. doi: 10.1021/jp802674m CrossRefGoogle Scholar
  40. Reddy BM, Katta L, Gode T (2009) Novel nanocrystalline Ce1−xLaxO2−δ (x = 0.2) solid solutions: structural characteristics and catalytic performance. Chem Mater 22(2):467–475. doi: 10.1021/cm903282w CrossRefGoogle Scholar
  41. Romero D, Chlala D, Labaki M, Royer S, Bellat JP, Bezverkhyy I, Giraudon JM, Lamonier JF (2015) Removal of toluene over NaX zeolite exchanged with Cu2+. Catalysts 5(3):1479–1497. doi: 10.3390/catal5031479 CrossRefGoogle Scholar
  42. Sakthivel S, Shankar M, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38(13):3001–3008. doi: 10.1016/j.watres.2004.04.046 CrossRefGoogle Scholar
  43. Santra C, Auroux A, Chowdhury B (2016) Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC Adv 6(51):45330–45342. doi: 10.1039/C6RA05216A CrossRefGoogle Scholar
  44. Scire S, Minico S, Crisafulli C, Satriano C, Pistone A (2003) Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl Catal B 40(1):43–49. doi: 10.1016/S0926-3373(02)00127-3 CrossRefGoogle Scholar
  45. Scirè S, Minicò S, Crisafulli C, Galvagno S (2001) Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3. Catal Commun 2(6):229–232. doi: 10.1016/S1566-7367(01)00035-8 CrossRefGoogle Scholar
  46. Seker E, Gulari E (2002) Single step sol–gel made gold on alumina catalyst for selective reduction of NOx under oxidizing conditions: effect of gold precursor and reaction conditions. Appl Catal A Gen 232(2002):203–217. doi: 10.1016/S0926-860X(02)00115-1 CrossRefGoogle Scholar
  47. Shapovalov V, Metiu H (2007) Catalysis by doped oxides: CO oxidation by AuxCe1−xO2. J Catal 245(1):205–214. doi: 10.1016/S0920-5861(01)00477-1 CrossRefGoogle Scholar
  48. Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B144:900–908. doi: 10.1016/j.apcatb.2013.08.035 CrossRefGoogle Scholar
  49. Terribile D, Trovarelli A, Llorca J, Leitenburg C, Dolcetti G (1998) The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J Catal 178(1):299–308. doi: 10.1006/jcat.1998.2152 CrossRefGoogle Scholar
  50. Tomas RR, Ivanova S, Centeno MA, Odriozola JA (2013) Low-temperature CO oxidation on multicomponent gold based catalysts. Front Chem 1:1–12. doi: 10.3389/fchem.2013.00012 Google Scholar
  51. Topka P, Kaluža L, Gaálová J (2016) Total oxidation of ethanol and toluene over ceria-zirconia supported platinum catalysts. Chem Pap 70(7):898–906. doi: 10.1515/chempap-2016-0028 CrossRefGoogle Scholar
  52. Trovarelli A (1996) Catalytic properties of ceria and CeO2 containing materials. Catal Rev Sci Eng 38(4):439–520. doi: 10.1080/01614949608006464 CrossRefGoogle Scholar
  53. Trovarelli A, Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367. doi: 10.1016/S0920-5861(98)00515-X CrossRefGoogle Scholar
  54. Turgut G, Aydın ESS, Dilber R, Turgut U (2014) The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin film. Ceram Int 40:12891–12898. doi: 10.1016/j.ceramint.2014.04.148 CrossRefGoogle Scholar
  55. Wang X, Hanson JC, Liu G, José A, Rodriguez AI, Fernández M (2004) The behavior of mixed-metal oxides: physical and chemical properties of bulk Ce1−xTbxO2 and nanoparticles of Ce1−xTbxOy. J Chem Phys 121(11):5434–5444. doi: 10.1063/1.1781116 CrossRefGoogle Scholar
  56. Wilkes M, Hayden P, BhattacharyaA K (2003) Catalytic studies on ceria lanthana solid solutions III surface segregation and solid state studies. J Catal 2:305–309. doi: 10.1016/S0021-9517(03)00046-0 CrossRefGoogle Scholar
  57. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6(3):1–16. doi: 10.1038/am.2013.88 CrossRefGoogle Scholar
  58. Xu FQ, Hou RL, Liu XX, Xue JZ, Liu SL, Shen SK (1997) Study on mobility and reactivity of oxygen of ceria-based OCM catalysts by temperature programmed pulse reaction (TPPR). J Energy Chem 6(4):265–274. doi: 10.1016/j.jechem.1997.04.0265 Google Scholar
  59. Yinga F, Wang S, Au CT, Lai SY (2010) Effect of the oxidation state of gold on the complete oxidation of isobutane on Au/CeO2 catalysts. Gold Bull 43(4):241–251. doi: 10.1007/BF03214994 CrossRefGoogle Scholar
  60. Zak AK, Majid WH, Abrishhami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13(1):251–256. doi: 10.1016/j.solidstatesciences.2010.11.024 CrossRefGoogle Scholar
  61. Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl Phys Lett 80(1):127–129. doi: 10.1063/1.1430502 CrossRefGoogle Scholar
  62. Zhang F, Jin Q, Chan SW (2004) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95(8):4319–4326. doi: 10.1063/1.1667251 CrossRefGoogle Scholar
  63. Zhang C, Michaelides A, King DA, Jenkins SJ (2008) Structure of gold atoms on stoichiometric and defective ceria surfaces. J Chem Phys 129(194708):1–8. doi: 10.1063/1.3009629 Google Scholar
  64. Zhang YH, Zhang HL, Cao Y, Yang Y, Xu BQ, Zhao M, Gong MC, Xu HD, Chen YQ (2016) Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion. Chem Pap 70(10):1370–1379. doi: 10.1515/chempap-2016-0070 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Defence Bioengineering and Electromedical LaboratoryBangaloreIndia

Personalised recommendations