Chemical Papers

, Volume 72, Issue 4, pp 1055–1064 | Cite as

Design and synthesis of organo-silica shell based dual-functional microencapsulated phase change material for thermal regulating systems

  • Jing Wei
  • Tao Wang
  • Hui Li
  • Qu-Liang Lu
  • Yong Jiang
Original Paper
  • 66 Downloads

Abstract

A novel form of dual-functional microcapsules with the core composition of phase change material with thermal energy storage capacity was formulated, which possessed photoluminescence features because of including rare earth nanoparticles in the core. Additionally, the core of the microcapsule is encapsulated by an organo-silica shell. The microcapsules were synthesized via interfacial polycondensation in a reverse emulsion templating system. The scanning electron microscope (SEM) and transmission electron microscopy (TEM) images of the formulated microcapsules presented a distinctive core–shell structure. The chemical compositions and crystalline structures of the microcapsules were confirmed by Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy, respectively. The fluorescence properties of the microcapsules were observed on an upright fluorescence microscope while the thermal properties of the microcapsules were evaluated by thermogravimetric analysis and differential scanning calorimetry. The results demonstrated that the developed strategy can certainly guide the design of multifunctional materials with numerous applications in the field of thermal energy storage.

Keywords

Fluorescence Electron microscopy Fluorescence spectroscopy Yttrium 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) with Grant no. 21174029, the Industry Academia Cooperation Innovation Fund of Jiangsu Province with Grant no. BY2014127-07, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Fundamental Research Funds for the Central Universities with Grant no. 2242016K41020.

References

  1. Chai L, Wang X, Wu D (2015) Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl Energy 138:661–674. doi: 10.1016/j.apenergy.2014.11.006 CrossRefGoogle Scholar
  2. Chen F, Wolcott MP (2014) Miscibility studies of paraffin/polyethylene blends as form-stable phase change materials. Eur Polym J 52:44–52. doi: 10.1016/j.eurpolymj.2013.09.027 CrossRefGoogle Scholar
  3. Cheralathan M, Velraj R, Renganarayanan S (2007) Effect of porosity and the inlet heat transfer fluid temperature variation on the performance of cool thermal energy storage system. Heat Mass Transfer 43(8):833–842. doi: 10.1016/j.enbuild.2013.08.006 CrossRefGoogle Scholar
  4. De Castro PF, Ahmed A, Shchukin DG (2016) Confined-volume effect on the thermal properties of encapsulated phase change materials for thermal energy storage. Chem Eur J 22(13):4389–4394. doi: 10.1002/chem.201505035
  5. Fang G, Chen Z, Li H (2010) Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials Chem. Eng. J. 163(1–2):154–159. doi: 10.1016/j.cej.2010.07.054 Google Scholar
  6. Giro-Paloma J, Martinez M, Cabeza LF, Ines Fernandez A (2016) Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sust Energy Rev 53:1059–1075. doi: 10.1016/j.rser.2015.09.040 CrossRefGoogle Scholar
  7. Hu W, Yu X (2014) Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure. Renew Energy 62(3):454–458. doi: 10.1016/j.renene.2013.07.047 CrossRefGoogle Scholar
  8. Jeong SG, Chang SJ, Wi S, Kang Y, Kim S (2016) Development and performance evaluation of heat storage paint with MPCM for applying roof materials as basic research. Energy Build 112:62–68. doi: 10.1016/j.enbuild.2015.12.001 CrossRefGoogle Scholar
  9. Jiang FY, Wang XD, and Wu DZ (2016) Magnetic microencapsulated phase change materials with an organo-silica shell: design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films. Energy 98:225–239. doi: 10.1016/j.energy.2016.01.008
  10. Kalnaes SE, Jelle BP (2015) Phase change materials and products for building applications: a state-of-the-art review and future research opportunities. Energy Build 94:150–176. doi: 10.1016/j.enbuild.2015.02.023 CrossRefGoogle Scholar
  11. Khadiran T, Hussein MZ, Zainal Z, Rusli R (2015) Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol Energy Mat Sol C 143:78–98. doi: 10.1016/j.solmat.2015.06.039 CrossRefGoogle Scholar
  12. Khadiran T, Hussein MZ, Zainal Z, Rusli R (2016) Advanced energy storage materials for building applications and their thermal performance characterization: a review. Renew Sust Energy Rev 57:916–928. doi: 10.1016/j.rser.2015.12.081 CrossRefGoogle Scholar
  13. Li C, Fu L, Ouyang J, Yang H (2013) Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci Rep 3:1–8. doi: 10.1038/srep01908 Google Scholar
  14. Li M, Chen M, Wu Z (2014) Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube. Appl Energy 127(6):166–171. doi: 10.1016/j.apenergy.2014.04.029 CrossRefGoogle Scholar
  15. Li F, Wang X, Wu D (2015) Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis. Energ Convers Manag 106:873–885. doi: 10.1016/j.enconman.2015.10.026 CrossRefGoogle Scholar
  16. Liu S, Li Y, Zhang Y (2016) Review on heat transfer mechanisms and characteristics in encapsulated PCMs. Heat Transfer Eng 36(10):880–901. doi: 10.1080/01457632.2015.965093 CrossRefGoogle Scholar
  17. Oro E, de Gracia A, Cabeza LF (2013) Active phase change material package for thermal protection of ice cream containers. Int J Refrig 36(1):102–109. doi: 10.1016/j.ijrefrig.2012.09.011 CrossRefGoogle Scholar
  18. Pan L, Tao Q, Zhang S, Wang S, Zhang J, Wang S, Wang Z, Zhang Z (2012) Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol Energy Mat Sol C 98:66–70. doi: 10.1016/j.solmat.2011.09.020 CrossRefGoogle Scholar
  19. Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. doi: 10.1016/j.pmatsci.2014.03.005 CrossRefGoogle Scholar
  20. Pitie F, Zhao CY, Caceres G (2011) Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles Energ. Environ Sci 4(6):2117–2124. doi: 10.1039/c0ee00672f Google Scholar
  21. Pomianowski M, Heiselberg P, Zhang Y (2013) Review of thermal energy storage technologies based on PCM application in buildings. Energy Build 67:56–69. doi: 10.1016/j.enbuild.2013.08.006 CrossRefGoogle Scholar
  22. Predeep P, Saxena NS (1997) Effective thermal conductivity and thermal diffusivity of some rare earth oxides. Phys Scr 55(5):634–636. doi: 10.1088/0031-8949/55/5/017 CrossRefGoogle Scholar
  23. Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60. doi: 10.1016/j.tca.2012.04.013 CrossRefGoogle Scholar
  24. Shi Y, Wu Y, Zhu L, Shentu B, Weng Z (2015) Preparation and properties of phase-change heat-storage UV curable polyurethane acrylate coating. J Appl Polym Sci 132(2):1–8. doi: 10.1002/app.41266 CrossRefGoogle Scholar
  25. Su JC, Liu PS (2007) Effect of hard and soft segments on the heat storage properties of polyethylene glycol-based polyurethanes. Acta Polym Sin 2:97–102Google Scholar
  26. Su W, Darkwa J, Kokogiannakis G (2015) Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sust Energy Rev 48:373–391. doi: 10.1016/j.rser.2015.04.044 CrossRefGoogle Scholar
  27. Suppes GJ, Goff MJ, Lopes S (2003) Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem Eng Sci 58(9):1751–1763. doi: 10.1016/s0009-2509(03)00006-x CrossRefGoogle Scholar
  28. Xiang HX, Wang SC, Wang RL, Zhou Z, Peng C, Zhu MF (2013) Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Sci China Chem 56:716–723. doi: 10.1007/s11426-013-4837-5 CrossRefGoogle Scholar
  29. Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307. doi: 10.1016/j.apenergy.2015.09.016 CrossRefGoogle Scholar
  30. Yu S, Wang X, Wu D (2014) Self-Assembly Synthesis of Microencapsulated n-Eicosane Phase-Change Materials with Crystalline-Phase-Controllable Calcium Carbonate Shell. Energy Fuels 28(5):3519–3529.  https://doi.org/10.1021/ef5005539 CrossRefGoogle Scholar
  31. Zhang H, Wang X (2009) Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mat Sol C 93(8):1366–1376. doi: 10.1016/j.solmat.2009.02.021 CrossRefGoogle Scholar
  32. Zhang G, Li J, Chen Y, Xiang H, Ma B, Xu Z, Ma X (2014) Encapsulation of copper-based phase change materials for high temperature thermal energy storage. Sol Energy Mat Sol C 128:131–137. doi: 10.1016/j.solmat.2014.05.012 CrossRefGoogle Scholar
  33. Zhang Y, Wang X, Wu D (2015) Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics. Sol Energy Mat Sol C 133:56–68. doi: 10.1016/j.solmat.2014.10.035 CrossRefGoogle Scholar
  34. Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sust Energy Rev 15(8):3813–3832. doi: 10.1016/j.rser.2011.07.019 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical ResearchSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Chengxian CollegeSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations