Advertisement

Chemical Papers

, Volume 72, Issue 3, pp 719–729 | Cite as

A novel receptor for detection of Zn2+ metal ion and F, H2PO4 and AcO anions in aqueous media: a DFT study

  • Masoumeh Orojloo
  • Raziyeh Arabahmadi
  • Fatemeh Naderi
  • Fatemeh Parchegani
  • Mohammad Solimannejad
  • Peyman Zolgharnein
  • Saeid Amani
Original Paper
  • 94 Downloads

Abstract

A new colorimetric chemosensor L, containing electron-donating moieties attached to the thiazole-based Schiff base was synthesized. The optical and colorimetric sensing properties of L for anions and cations were investigated using naked eye, UV–Vis and computational studies. The receptor L displays visual changes towards anions like F, H2PO4 and AcO and also towards cation such as Zn2+ in DMSO. Other anions such as Cl , Br, I, NO3 and HSO4 did not cause any color change. On the addition of other metal ions such as Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Cd2+, Hg2+ and Pb2+, the receptor did not show any significant change. The binding constant (K a ) and stoichiometry of the host–guest complex formed were calculated by the Benesi–Hildebrand (B–H) plot and Job’s plot method, respectively. Computational studies and UV–Vis titration were further used to emphasize the sensing behavior of the receptor. Quantum chemical calculations and molecular studies using Density Functional Theory and Molecular Electrostatic Potential surface studies were carried out to supplement the experimental results and gain deeper insights about the structural as well as the spectral aspects of the complex.

Graphical Abstract

Receptor L proved to be a fluorescence and colorimetric Zn (II), fluoride (F−1), di-hydrogen phosphate (H2PO 4 −1 ) and acetate (AcO−1) sensor. This new chromogenic receptor shows a highly selective coloration for the above ions. The chemosensor showed a color change upon addition of Zn (II), or fluoride or di-hydrogen phosphate or acetate ions.

Keywords

Naked-eye detection Chemosensor DFT Calculations Thiazole Schiff base 

Notes

Acknowledgements

The authors (M. Orojloo and S. Amani) would like to thank the Research Council of Arak University for financial support of this research.

Supplementary material

11696_2017_312_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1510 kb)

References

  1. Arabahmadi R, Amani S (2013) Synthesis and studies of selective chemosensors for anions and cations by azo-containing salicylaldimine-based receptors. J Coord Chem 66(2):218–226CrossRefGoogle Scholar
  2. Arabahmadi R, Amani S (2014) A new fluoride ion colorimetric sensor based on azo–azomethine receptors. Supramol Chem 26(5–6):321–328CrossRefGoogle Scholar
  3. Arabahmadi R, Orojloo M, Amani S (2014) Azo Schiff bases as colorimetric and fluorescent sensors for recognition of F, Cd2+ and Hg2+ ions. Anal Methods 6(18):7384–7393CrossRefGoogle Scholar
  4. Assaf S, Chung S-H (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308(5961):734–736CrossRefGoogle Scholar
  5. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40(3):486–516CrossRefGoogle Scholar
  6. Benesi HA, Hildebrand J (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71(8):2703–2707CrossRefGoogle Scholar
  7. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271(5252):1081CrossRefGoogle Scholar
  8. Borisenko V et al (2006) Hydrogen bonds of 2-aminothiazoles in intermolecular complexes (1:1 and 1:2) with proton acceptors in solutions. J Mol Struct 783(1):101–115CrossRefGoogle Scholar
  9. Borisova NE, Reshetova MD, Ustynyuk YA (2007) Metal-free methods in the synthesis of macrocyclic Schiff bases. Chem Rev 107(1):46–79CrossRefGoogle Scholar
  10. Buccella D, Horowitz JA, Lippard SJ (2011) Understanding zinc quantification with existing and advanced ditopic fluorescent Zinpyr sensors. J Am Chem Soc 133(11):4101–4114CrossRefGoogle Scholar
  11. Burdette SC, Lippard SJ (2001) ICCC34—golden edition of coordination chemistry reviews. Coordination chemistry for the neurosciences. Coord Chem Rev 216:333–361CrossRefGoogle Scholar
  12. Burdette SC, Lippard SJ (2003) Meeting of the minds: metalloneurochemistry. Proc Natl Acad Sci 100(7):3605–3610CrossRefGoogle Scholar
  13. Canpolat E, Kaya M (2005) Studies on mononuclear chelates derived from substituted Schiff Base ligands: synthesis and characterization of a new 5-methoxysalicyliden-p-aminoacetophenoneoxime and its complexes with Co (II), Ni (II), Cu (II), and Zn (II). Russ J Coord Chem 31(11):790–794CrossRefGoogle Scholar
  14. Chohan ZH et al (2004) Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J Enzyme Inhib Med Chem 19(5):417–423CrossRefGoogle Scholar
  15. Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33(7):410–421CrossRefGoogle Scholar
  16. Falchuk KH (1998) The molecular basis for the role of zinc in developmental biology. In: Pierce GN, Izumi T, Rupp H, Grynberg A (eds) Molecular and cellular effects of nutrition on disease processes, vol 26. Springer, BostonGoogle Scholar
  17. Frederickson CJ et al (2006) Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J Neurosci Methods 154(1):19–29CrossRefGoogle Scholar
  18. Frisch M et al (2004) Gaussian 03, revision C. 02. Gaussian, Inc., Wallingford, p 26Google Scholar
  19. Gale PA, Garcia-Garrido SE, Garric J (2008) Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem Soc Rev 37(1):151–190CrossRefGoogle Scholar
  20. Gentili PL (2007) Boolean and fuzzy logic implemented at the molecular level. Chem Phys 336(1):64–73CrossRefGoogle Scholar
  21. Gunnlaugsson T et al (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250(23):3094–3117CrossRefGoogle Scholar
  22. Gupta VK et al (2013) Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sens Actuators B Chem 182:642–651CrossRefGoogle Scholar
  23. Hu R et al (2010) A rapid aqueous fluoride ion sensor with dual output modes. Angew Chem Int Ed 49(29):4915–4918CrossRefGoogle Scholar
  24. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248(1):205–229CrossRefGoogle Scholar
  25. Joseyphus RS, Dhanaraj CJ, Nair MS (2006) Synthesis and characterization of some Schiff base transition metal complexes derived from vanillin and L (+) alanine. Transition Met Chem 31(6):699–702CrossRefGoogle Scholar
  26. Kang SO et al (2010) Cryptand-like anion receptors. Chem Soc Rev 39(10):3980–4003CrossRefGoogle Scholar
  27. Lavigne JJ, Anslyn EV (2001) Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angew Chem Int Ed 40(17):3118–3130CrossRefGoogle Scholar
  28. Lee MH et al (2010) A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chem Commun 46(9):1407–1409CrossRefGoogle Scholar
  29. Leung AC, MacLachlan MJ (2007) Poly (salphenyleneethynylene) s: soluble, conjugated metallopolymers that exhibit unique supramolecular crosslinking behavior. J Mater Chem 17(19):1923–1932CrossRefGoogle Scholar
  30. Li S-H et al (2009) Enhanced fluorescence sensing of hydroxylated organotins by a boronic acid-linked Schiff base. Chem Commun 28:4179–4181CrossRefGoogle Scholar
  31. Li N, Xiang Y, Tong A (2010) Highly sensitive and selective “turn-on” fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chem Commun 46(19):3363–3365CrossRefGoogle Scholar
  32. Li H, Lalancette RA, Jäkle F (2011) Turn-on fluorescence response upon anion binding to dimesitylboryl-functionalized quaterthiophene. Chem Commun 47(33):9378–9380CrossRefGoogle Scholar
  33. Li J et al (2012) A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties. J Mater Chem 22(2):478–482CrossRefGoogle Scholar
  34. Li Y-P et al (2013) A new ditopic ratiometric receptor for detecting zinc and fluoride ions in living cells. Analyst 138(18):5486–5494CrossRefGoogle Scholar
  35. Li Y et al (2014) A bimodal multianalyte simple molecule chemosensor for Mg2+, Zn2+, and Co2+. Dalton Trans 43(4):1881–1887CrossRefGoogle Scholar
  36. Likussar W, Boltz D (1971) Theory of continuous variations plots and a new method for spectrophotometric determination of extraction and formation constants. Anal Chem 43(10):1265–1272CrossRefGoogle Scholar
  37. Lin H-Y et al (2012) A turn-on and reversible fluorescence sensor for zinc ion. Analyst 137(19):4415–4417CrossRefGoogle Scholar
  38. Liu A et al (2013) A novel rhodamine-based colorimetric and fluorescent sensor for the dual-channel detection of Cu 2+ and Fe 3+ in aqueous solutions. Dyes Pigm 99(2):472–479CrossRefGoogle Scholar
  39. Maret W et al (1999) Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci 96(5):1936–1940CrossRefGoogle Scholar
  40. Martinez-Manez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103(11):4419–4476CrossRefGoogle Scholar
  41. Martínez-Máñez R, Sancenón F (2006) Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coord Chem Rev 250(23):3081–3093CrossRefGoogle Scholar
  42. Modi J, Sabnis S, Deliwala C (1970) Potential anticancer agents. III. Schiff bases from benzaldehyde nitrogen mustards and aminophenylthiazoles. J Med Chem 13(5):935–941CrossRefGoogle Scholar
  43. Momoki K et al (1969) Theory of curved molar ratio plots and a new linear plotting method. Anal Chem 41(10):1286–1299CrossRefGoogle Scholar
  44. Orojloo M, Amani S (2016) Synthesis and studies of selective chemosensor for naked-eye detection of anions and cations based on a new Schiff-base derivative. Talanta 159:292–299CrossRefGoogle Scholar
  45. Orojloo M, Amani S (2017) Naked-eye detection of cyanide ions in aqueous media based on an azo-azomethine chemosensor. C R Chim 20(4):415–423CrossRefGoogle Scholar
  46. Orojloo M et al (2017) Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes derived from two Schiff base ligands: spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies. Inorg Chim Acta 467:227–237CrossRefGoogle Scholar
  47. Park S et al (2012) Azo dye-based latent colorimetric chemodosimeter for the selective detection of cyanides in aqueous buffer. Sens Actuators B Chem 174:140–144CrossRefGoogle Scholar
  48. Prodi L, Montalti M, Zaccheroni N (2011) Luminescence applied in sensor science, vol 300. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  49. Safin DA, Babashkina MG, Garcia Y (2013) Crown ether-containing Schiff base as a highly efficient “turn-on” fluorescent sensor for determination and separation of Zn2+ in water. Dalton Trans 42(6):1969–1972CrossRefGoogle Scholar
  50. Santos-Figueroa LE et al (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem Soc Rev 42(8):3489–3613CrossRefGoogle Scholar
  51. Sarkar K et al (2009) Selective zinc (II)-ion fluorescence sensing by a functionalized mesoporous material covalently grafted with a fluorescent chromophore and consequent biological applications. Adv Func Mater 19(2):223–234CrossRefGoogle Scholar
  52. Sessler JL, Seidel D (2003) Synthetic expanded porphyrin chemistry. Angew Chem Int Ed 42(42):5134–5175CrossRefGoogle Scholar
  53. Shang L, Jin L, Dong S (2009) Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem Commun 21:3077–3079CrossRefGoogle Scholar
  54. Shen R et al (2008) Anion recognition by a novel zinc (Π) xanthone–crown ether complex. Inorg Chem Commun 11(3):318–322CrossRefGoogle Scholar
  55. Sheng R et al (2008) Colorimetric test kit for Cu2+ detection. Org Lett 10(21):5015–5018CrossRefGoogle Scholar
  56. Tomat E, Lippard SJ (2010) Ratiometric and intensity-based zinc sensors built on rhodol and rhodamine platforms. Inorg Chem 49(20):9113–9115CrossRefGoogle Scholar
  57. Vashi K, Naik H (2004) Synthesis of novel Schiff base and azetidinone derivatives and their antibacterial activity. J Chem 1(5):272–275Google Scholar
  58. Venugopala K, Jayashree B (2003) Synthesis of carboxamides of 2′-amino-4′-(6-bromo-3-coumarinyl) thiazole as analgesic and antiinflammatory agents. Indian J Heterocycl Chem 12(4):307–310Google Scholar
  59. Vigato P, Tamburini S, Bertolo L (2007) The development of compartmental macrocyclic Schiff bases and related polyamine derivatives. Coord Chem Rev 251(11):1311–1492CrossRefGoogle Scholar
  60. Wang Q-Q, Day VW, Bowman-James K (2011) Tunable, shape-shifting capsule for dicarboxylates. Chem Sci 2(9):1735–1738CrossRefGoogle Scholar
  61. Wang S et al (2015) A well-defined alternating copolymer based on a salicylaldimine Schiff base for highly sensitive zinc (II) detection and pH sensing in aqueous solution. Polym Chem 6(7):1127–1136CrossRefGoogle Scholar
  62. Xu Z et al (2009) Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132(2):601–610CrossRefGoogle Scholar
  63. Xue L et al (2012) Rational design of a ratiometric and targetable fluorescent probe for imaging lysosomal zinc ions. Inorg Chem 51(20):10842–10849CrossRefGoogle Scholar
  64. Yoon J et al (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35(4):355–360CrossRefGoogle Scholar
  65. Zalewski PD, Forbes IJ, Betts W (1993) Correlation of apoptosis with change in intracellular labile Zn (II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy) acetic acid], a new specific fluorescent probe for Zn (II). Biochem J 296(2):403–408CrossRefGoogle Scholar
  66. Zyryanov GV, Palacios MA, Anzenbacher P (2007) Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew Chem Int Ed 46(41):7849–7852CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Masoumeh Orojloo
    • 1
  • Raziyeh Arabahmadi
    • 2
  • Fatemeh Naderi
    • 1
  • Fatemeh Parchegani
    • 1
  • Mohammad Solimannejad
    • 1
  • Peyman Zolgharnein
    • 3
  • Saeid Amani
    • 1
  1. 1.Chemistry Department, Faculty of SciencesArak UniversityArakIran
  2. 2.Chemistry DepartmentPayame Noor University (PNU)TehranIran
  3. 3.Material Science and Engineering DepartmentThe University of SheffieldSheffieldUK

Personalised recommendations