Chemical Papers

, Volume 72, Issue 4, pp 863–876 | Cite as

Structural study and magnetic properties of copper(II) thiophene-2-carboxylate with 4-pyridinemethanol and isonicotinamide

  • Peter Segľa
  • Vladimír Kuchtanin
  • Miroslav Tatarko
  • Jozef Švorec
  • Ján Moncol
  • Marian Valko
Original Paper
  • 111 Downloads

Abstract

The synthesis and characterization of [Cu(5-Me-2-tpc)2(4-pyme)2] (I), [Cu(3-Me-2-tpc)2(4-pyme)2] (II), [Cu(2-tpc)2(4-pyme)2] (III), [Cu(2-tpc)2(isonia)2(2-tpcH)] (IV), [Cu(5-Me-2-tpc)2(isonia)2(5-Me-2-tpcH)] (V), [Cu2(2-tpc)4(4-pyme)2] (VI), [Cu2(3-Me-2-tpc)4(isonia)2] (VII) (where 2-tpc is 2-thiophenecarboxylate, 3-Me-2-tpc is 3-methyl-2-thiophenecarboxylate, 5-Me-2-tpc is 5-methyl-2-thiophenecarboxylate and 4-pyme is 4-pyridinemethanol and isonia is isonicotinamide) are reported. The complexes under study were characterized by electronic, IR and EPR spectroscopy, magnetic susceptibility over the temperature range and X-ray structure analysis. Structural studies revealed a distorted tetragonal-bipyramidal environment around the copper ion for monomeric complexes IV. The structure of dimeric complexes VI and VII consists of units of the known paddle-wheel dicopper(II) tetracarboxylates, which are made up of four thiophene-2-carboxylate ions thus bridging the two copper atoms. The complex molecules of all compounds are connected through H-bonds into supramolecular chains or frameworks. The spectral and magnetic properties are discussed with regard to X-ray data.

Keywords

Complex Copper(II) Thiophenecarboxylate 4-Pyridinemethanol Isonicotinamide 

Notes

Acknowledgements

The authors acknowledge the Slovak Grant Agency (VEGA 1/0388/14, VEGA 1/0686/17 and KEGA 017STU-4-2017) and the Slovak Research and Development Agency (Grant No. APVV-14-0078). This article was created with the support of the MŠVVaŠ of the Slovak Republic within the Research and Development Operational Programme for the project “University Science Park of STU Bratislava” (ITMS Project No. 26240220084) and co-funded by the European Regional Development Fund. We also thank to Grant scheme for Support of Excellent Teams of Young Researchers (BIOKA 1664).

Supplementary material

11696_2017_309_MOESM1_ESM.pdf (1022 kb)
Supplementary material 1 (PDF 1021 kb)
11696_2017_309_MOESM2_ESM.doc (184 kb)
Supplementary material 2 (DOC 184 kb)
11696_2017_309_MOESM3_ESM.cif (2.1 mb)
Supplementary material 3 (CIF 2198 kb)

References

  1. Aakeroy CB, Beatty AM, Desper J, O’Shea M, Valdes-Martines J (2003) Directed assembly of dinuclear and mononuclear copper(II)-carboxylates into infinite 1-D motifs using isonicotinamide as a high-yielding supramolecular reagent. Dalton Trans. doi: 10.1039/B308446A Google Scholar
  2. Agterberg FPW, Provó Kluit HAJ, Driessen WL, Reedijk J, Oevering H, Buijs W, Veldman N, Lakin MT, Spek AL (1998) Three dinuclear copper(II) carboxylates with the paddle-wheel cage structure as intermediates in copper(II) catalyzed oxidations of carboxylic acids. X-ray crystal structures of [tetrakis(diphenylacetato-μ-O, O’)bis (acetonitrile-N)dicopper(II)] tetrakis(acetonitrile), [tetrakis(diphenylacetato-μ-O, O’) bis(acetone-O)dicopper(II)] and [tetrakis(1-phenyl-1-carboxylato-μ-O, O’-cyclopentane)-bis(ethanol-O)dicopper (II)]bis(ethanol). Inorg Chim Acta 267:183–192. doi: 10.1016/S0020-1693(97)05579-5 CrossRefGoogle Scholar
  3. Arıcı M, ZaferYeşilel O, Acar E, Dege N (2017) Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids. Polyhedron 127:293–301. doi: 10.1016/j.poly.2017.02.013 CrossRefGoogle Scholar
  4. Bain GA, Berry JF (2008) Diamagnetic corrections and Pascal's constants. J Chem Educ 85:532–536. doi: 10.1021/ed085p532 CrossRefGoogle Scholar
  5. Beatty AM (2001) Hydrogen bonded networks of coordination complexes. CrystEngComm 3:243–255. doi: 10.1039/B109127C CrossRefGoogle Scholar
  6. Beatty AM (2003) Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes. Coord Chem Rev 246:131–143. doi: 10.1016/S0010-8545(03)00120-6 CrossRefGoogle Scholar
  7. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Pattern in hydrogen bonding functionality and graph set analysis in crystals. Angew Chem Int Ed Engl 34:1555–1573. doi: 10.1002/anie.199515551 CrossRefGoogle Scholar
  8. Bertová P, Kuchtanin V, Růžičková Z, Moncoľ J, Švorec J, Segľa P (2016) Different structural types of copper(II) furan- and thiophencarboxylates: X-ray structural, EPR, spectral and magnetic analyses. Chem Pap 70:114–125. doi: 10.1515/chempap-2015-0204 CrossRefGoogle Scholar
  9. Bruker (2001) SADABS [computer software]. Bruker, MadisonGoogle Scholar
  10. Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, Mallamo M, Mazzone A, Polidori G (2015) Crystal structure determination and refinement via SIR2014. J Appl Crystallogr 48:306–309. doi: 10.1107/s1600576715001132 CrossRefGoogle Scholar
  11. Catterick P, Thornton P (1977) Structures and physical properties of polynuclear carboxylates. Adv Inorg Chem Radiochem 20:291–362. doi: 10.1016/s065-2792(08)60041-2 CrossRefGoogle Scholar
  12. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. doi: 10.1107/s2052520616003954 CrossRefGoogle Scholar
  13. Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev 5:143–207. doi: 10.1016/S0010-8545(00)80135-6 CrossRefGoogle Scholar
  14. Jennifer SJ, Muthiah PT, Muthukumaran G (2013) Solvent dependent supramolecular interactions in two 5-chlorothiophene 2-carboxylate bridged dinuclear copper(II) complexes. Inorg Chim Acta 406:100–105. doi: 10.1016/j.ica.2013.07.006 CrossRefGoogle Scholar
  15. Kavalírová J, Vasková Z, Maroszová J, Moncol J, Koman M, Lis T, Mazur M, Valigura D (2010) One-dimensional and two-dimensional coordination polymers of copper(II) nitrobenzoate with bridging 3-pyridylmethanol ligand. Zeitschrift für anorganische und allgemeine Chemie 636:589–594. doi: 10.1002/zaac.200900356 CrossRefGoogle Scholar
  16. Kozlevčar B, Leban I, Turel I, Šegedin P, Petrič M, Pohleven F, White AJP, Wiliams DJ, Sieler J (1999) Complex of copper(II) acetate with nicotinamide: preparation, characterization and fungicidal activity; crystal structures of [Cu2(O2CCH3)4(nia)] and [Cu2(O2CCH3)4(nia)2]. Polyhedron 18:755–762. doi: 10.1016/S0277-5387(98)00350-7 CrossRefGoogle Scholar
  17. Kuchtanin V, Moncol J, Mrozinski J, Kalinska B, Padĕlková Z, Švorec J, Segľa P, Melník M (2013) Study of copper(II) thiophenecarboxylate complexes with N-methylnicotinamide. Polyhedron 50:546–555. doi: 10.1016/j.poly.2012.11.041 CrossRefGoogle Scholar
  18. Kuchtanin V, Švorec J, Moncol J, Růžičková Z, Mazúr M, Segľa P (2017) Polymeric and monomeric copper(II) thiophene- and furancarboxylato complexes. Bridging and terminal coordination of 3-pyridinemethanol. Polyhedron 121:211–221. doi: 10.1016/j.poly.2016.10.009 CrossRefGoogle Scholar
  19. Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, AmsterdamGoogle Scholar
  20. Maroszová M, Moncol J, Padelková Z, Sillanpää R, Lis T, Koman M (2011) Self-assembled hydrogen-bonded coordination networks in two copper(II) carboxylates with 4-pyridylmethanol. Cent Eur J Chem 9:453–459. doi: 10.2478/s11532-011-0023-9 CrossRefGoogle Scholar
  21. Masternak J, Zienkiewicz-Machnik M, Kowalik M, Jabłonska-Wawrzycka A, Rogala P, Adach A, Barszcz B (2016) Recent advances in coordination chemistry of metal complexes based on nitrogen heteroaromatic alcohols. Synthesis, structures and potential applications. Coord Chem Rev 327–328:242–270. doi: 10.1016/j.ccr.2016.01.007 CrossRefGoogle Scholar
  22. Melnik M, Potočňák I, Macášková Ľ, Mikloš D (1996) Spectral study of copper(II) flufenamates: crystal and Molecular structure of bis(flufenamato)di(N, N-diethylnicotinamide)di(aqua)cooper(II). Polyhedron 15:2159–2164. doi: 10.1016/0277-5387(95)00486-6 CrossRefGoogle Scholar
  23. Melnik M, Kabesova M, Koman M, Macaskova L, Garaj J, Holloway CE, Valent A (1998) Copper(II) coordination compounds: classification and analysis of crystallographic and structural data III. Dimeric Compounds. J Coord Chem 45:147–359. doi: 10.1080/00958979808027144 CrossRefGoogle Scholar
  24. Mihalčiak J, Bertová P, Růžičková Z, Moncol J, Segľa P, Boča R (2015) Structure and magnetism of novel dinuclear cobalt(II) complexes. Inorg Chem Commun 56:62–64. doi: 10.1016/j.inoche.2015.03.038 CrossRefGoogle Scholar
  25. Moncol J, Múdra M, Lönnecke P, Koman M, Melník M (2004a) Hydrogen-bonded coordination network in crystal structures of [Cu(3-PM)4Cl2] and [Cu(4-PM)4Cl]Cl (PM = pyridylmethanol). J Chem Crystallogr 34:423–431. doi: 10.1023/B:JOCC.0000035382.59831.ee CrossRefGoogle Scholar
  26. Moncol J, Kaliňaková B, Švorec J, Kleinová M, Koman M, Hudecová D, Melník M, Mazúr M, Valko M (2004b) Spectral properties and bio-activity of copper(II) clofibriates, part III: crystal structure of Cu(clofibriate)2(2-pyridylmethanol)2, Cu(clofibriate)2(4-pyridylmethanol)2(H2O) dihydrate, and Cu2(clofibriate)4(N, N-diethylnicotinamide)2. Inorg Chim Acta 357:3211–3222. doi: 10.1016/j.ica.2004.03.043 CrossRefGoogle Scholar
  27. Moncol J, Segľa P, Mikloš D, Mazúr M, Melník M, Głowiak T, Valko M, Koman M (2006) Structural diversity of coordination polymers with bridging 3-pyridylmethanol ligand: new type of coordination polymer with different stereochemistry of copper(II) atom. Polyhedron 25:1561–1566. doi: 10.1016/j.poly.2005.10.029 CrossRefGoogle Scholar
  28. Moncol J, Mudra M, Lönnecke P, Hewitt M, Valko M, Morris H, Svorec J, Melnik M, Mazur M, Koman M (2007) Crystal structures and spectroscopic behavior of monomeric, dimeric and polymeric copper(II) chloroacetate adducts with isonicotinamide, N-methylnicotinamide and N, N-diethylnicotinamide. Inorg Chim Acta 360:3213–3225. doi: 10.1016/j.ica.2007.03.027 CrossRefGoogle Scholar
  29. Moncol J, Maroszová J, Koman M, Melník M, Valko M, Mazur M, Lis T (2008) Self-assembly of hydrogen-bonded supramolecular structures of two copper(II) 2-bromobenzoate complexes with 4-pyridylmethanol and nicotinamide. J Coord Chem 61:3740–3752. doi: 10.1080/00958970802146031 CrossRefGoogle Scholar
  30. Moncol J, Kuchtanin V, Polakovičová P, Mrozinski J, Kalinska B, Koman M, Padělková Z, Segľa P, Melník M (2012) Study of copper(II) thiophenecarboxylate complexes with nicotinamide. Polyhedron 45:94–102. doi: 10.1016/j.poly.2012.07.069 CrossRefGoogle Scholar
  31. Murugavel R, Kuppuswamy S, Boomishankar R, Steiner A (2006) Hierarchical structures built from a molecular zinc phosphate core. Angew Chem Int Ed 45:5536–5540. doi: 10.1002/anie.200601704 CrossRefGoogle Scholar
  32. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  33. Necefoglu H, Ozbek FE, Ozturk V, Tercan B, Hokelek T (2011) Bis(4-fluorobenzoato)-κ2O, O’;κO-(4-fluorobenzoic acid-κO)-bis(nicotinamide-κN1)copper(II). Acta Crystallogr Sect E Crystallogr Commun 67:m887–m888. doi: 10.1107/s1600536811020897 Google Scholar
  34. Ozarowski A (2008) The zero-field-splitting parameter D in binuclear copper(II) carboxylates is negative. Inorg Chem 47(21):9760–9762. doi: 10.1021/ic801560e CrossRefGoogle Scholar
  35. Palatinus L, Chapuis G (2007) SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790. doi: 10.1107/s002188987029238 CrossRefGoogle Scholar
  36. Perec M, Baggio RF, Rena O, Sartoris RP, Calvo R (2011) Synthesis and structures of four new compounds of the copper(II)-carboxylate-pyridinecarboxamide system. Inorg Chim Acta 373:117–123. doi: 10.1016/j.ica.2011.03.065 CrossRefGoogle Scholar
  37. Ramos-Lima FJ, Vrána O, Quiroga AG, Navarro-Ranninger C, Halámikova A, Rybničková H, Hejmalova L, Brabec V (2006) Structural characterization, DNA interactions, and cytotoxicity of new transplatin analogues containing one aliphatic and one planar heterocyclic amine ligand. J Med Chem 49:2640–2651. doi: 10.1021/jm0602514 CrossRefGoogle Scholar
  38. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New York and LondonGoogle Scholar
  39. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A Found Adv 64:112–122. doi: 10.1107/s0108767307043930 CrossRefGoogle Scholar
  40. Sheldrick GM (2015a) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. doi: 10.1107/s2053273314026370 CrossRefGoogle Scholar
  41. Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. doi: 10.1107/s2053229614024218 CrossRefGoogle Scholar
  42. Stamatatos TC, Foguet-Albiol D, Perlepes SP, Raptopoulou CP, Terzis A, Patrickios CS, Christou G, Tasiopoulos AJ (2006) 4-(Hydroxymethyl)pyridine and pyrimidine in manganese benzoate chemistry: preparation and characterization of hexanuclear clusters featuring the {MnII 4MnIII2(μ4-O)2}10 + core. Polyhedron 25:1737–1746. doi: 10.1016/j.poly.2005.11.019 CrossRefGoogle Scholar
  43. Sundberg MR, Uggla R, Melnik M (1996) Comparison of the structural parameters in copper(II) acetate-type dimers containing distorted square pyramidal CuO4O and CuO4N chromophores. Polyhedron 7:1157–1163. doi: 10.1016/0277-5387(95)00352-5 CrossRefGoogle Scholar
  44. Švorec J, Polakovičová P, Moncol J, Kuchtanin V, Breza M, Šoralová S, Padělková Z, Mrozinski J, Lis T, Segľa P (2014) Structural, magnetic and quantum-chemical study of dinuclear copper(II) thiophenecarboxylate and furancarboxylate complexes. Polyhedron 81:216–226. doi: 10.1016/j.poly.2014.05.071 CrossRefGoogle Scholar
  45. Ucar I, Bulut I, Bulut A, Karadag A (2009) Polymeric and monomeric dipicolinate complexes with 4-hydroxymethyl pyridine: spectral, structural, thermal and electrochemical characterization. Struct Chem 20:825–838. doi: 10.1007/s11224-009-9475-3 CrossRefGoogle Scholar
  46. Valigura D, Moncol J, Korabik M, Pučeková Z, Lis T, Mrozinski J, Melnik M (2006) New dimeric copper(II) complex [Cu(5-MeOsal)2(µ-nia)(H2O)]2 with magnetic exchange interactions through H-bonds. Eur J Inorg Chem. doi: 10.1002/ejic.200600477 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Peter Segľa
    • 1
  • Vladimír Kuchtanin
    • 1
  • Miroslav Tatarko
    • 1
  • Jozef Švorec
    • 1
  • Ján Moncol
    • 1
  • Marian Valko
    • 2
  1. 1.Department of Inorganic Chemistry, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovakia
  2. 2.Department of Physical Chemistry, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations