Advertisement

Chemical Papers

, Volume 72, Issue 2, pp 449–455 | Cite as

Cu(BDC) as a catalyst for rapid reduction of methyl orange: room temperature synthesis using recycled terephthalic acid

  • Alireza Rahmani
  • Hossein Rahmani
  • Afsaneh Zonouzi
Short Communication

Abstract

Terephthalic acid was recycled from waste PET bottles with a basic hydrolysis technique and characterized with UV and FTIR spectroscopy. Copper-based metal–organic framework Cu(BDC) was synthesized at room temperature without any additive; two different temperatures were chosen to activate the obtained material. Characterization studies were performed using XRD, N2 physisorption, STEM and EDX. The obtained material was tested as a catalyst for the reduction of methyl orange with NaBH4 in aqueous solutions. Thermal activation at 160 °C proved to be mandatory for catalytic activity; although higher temperature activation did not cause significant enhancement. Rapid dye removal was monitored by continuous photometry at λ max. The results were quite satisfactory (about 85% removal in 5 min); even higher than the published results for precious metal (i.e., Au, Pt and Ag) nanoparticles. In an increased reaction scale, UV–visible spectra and mass spectrum were recorded to help elucidating the possible reaction mechanism. In addition, recycling experiment were performed in 100-ml scale without any kind of re-activation (washing or drying) to show the ability of Cu(BDC) as a stable catalyst for reductive dye removal (and probably similar reactions as well).

Keywords

Cu(BDC) Heterogeneous catalysis Dye removal Reduction Terephthalic acid 

Notes

Acknowledgements

The authors wish to thank University of Tehran, IROST, PCRC and the Iranian National Nanotechnology Initiative for financial support.

Supplementary material

11696_2017_297_MOESM1_ESM.docx (787 kb)
Supplementary material 1 (DOCX 787 kb)

References

  1. Burrows A, Lamberti C, Pidko E, Minguez IL, de Vos D, Hupp JT, Juan-Alcaniz J, García H, Palkovits R, Kapteijn F (2013) Metal organic frameworks as heterogeneous catalysts. R Soc Chem. eISBN:978-1-84973-758-6Google Scholar
  2. Carson CG, Hardcastle K, Schwartz J, Liu X, Hoffmann C, Gerhardt RA, Tannenbaum R (2009) Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur J Inorg Chem 2009:2338–2343. doi: 10.1002/ejic.200801224 CrossRefGoogle Scholar
  3. Carson CG, Brunnello G, Lee SG, Jang SS, Gerhardt RA, Tannenbaum R (2014) Structure solution from powder diffraction of copper 1, 4-benzenedicarboxylate. Eur J Inorg Chem 2014:2140–2145. doi: 10.1002/ejic.201301543 CrossRefGoogle Scholar
  4. Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly (ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Res 10:390–394. doi: 10.1065/espr2001.12.104.8 CrossRefGoogle Scholar
  5. Centi G, Ciambelli P, Perathoner S, Russo P (2002) Environmental catalysis: trends and outlook. Catal Today 75:3–15. doi: 10.1016/S0920-5861(02)00037-8 CrossRefGoogle Scholar
  6. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi: 10.1016/j.biortech.2005.05.001 CrossRefGoogle Scholar
  7. Dang GH, Vu YT, Dong QA, Le DT, Truong T, Phan NT (2015) Quinoxaline synthesis via oxidative cyclization reaction using metal–organic framework Cu (BDC) as an efficient heterogeneous catalyst. Appl Catal A 491:189–195. doi: 10.1016/j.apcata.2014.11.009 CrossRefGoogle Scholar
  8. Dias EM, Petit C (2015) Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J Mater Chem A 3:22484–22506. doi: 10.1039/C5TA05440K CrossRefGoogle Scholar
  9. Dikio ED, Farah AM (2013) Synthesis, characterization and comparative study of copper and zinc metal organic frameworks. Chem Sci Trans 2:1386–1394. doi: 10.7598/cst2013.520 Google Scholar
  10. Dumée LF, Maina JW, Merenda A, Reis R, He L, Kong L (2017) Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J Membr Sci 528:217–224. doi: 10.1016/j.memsci.2017.01.041 CrossRefGoogle Scholar
  11. Emrooz HBM, Rahmani AR, Gotor FJ (2017) Synthesis, characterisation, and photocatalytic behaviour of mesoporous ZnS nanoparticles prepared using by-product templating. Aust J Chem. doi: 10.1071/CH17192 Google Scholar
  12. Fan J, Guo Y, Wang J, Fan M (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166:904–910. doi: 10.1016/j.jhazmat.2008.11.091 CrossRefGoogle Scholar
  13. Farrusseng D (2011) Metal-organic frameworks: applications from catalysis to gas storage. Wiley. doi: 10.1002/9783527635856
  14. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. doi: 10.1126/science.1230444 CrossRefGoogle Scholar
  15. Gupta N, Singh HP, Sharma RK (2011) Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Mol Catal A: Chem 335:248–252. doi: 10.1016/j.molcata.2010.12.001 CrossRefGoogle Scholar
  16. He L, Dumee LF, Liu D, Velleman L, She F, Banos C, Davies JB, Kong L (2015) Silver nanoparticles prepared by gamma irradiation across metal-organic framework templates RSC. Advances 5(14):10707–10715. doi: 10.1039/C4RA10260F Google Scholar
  17. Kubica P, Wolinska-Grabczyk A, Grabiec E, Libera M, Wojtyniak M, Czajkowska S, Domański M (2016) Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles. Microporous Mesoporous Mater 235:120–134. doi: 10.1016/j.micromeso.2016.07.037 CrossRefGoogle Scholar
  18. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459. doi: 10.1039/B807080F CrossRefGoogle Scholar
  19. Luz I, i Xamena FL, Corma A (2010) Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts. J Catal 276:134–140. doi: 10.1016/j.jcat.2010.09.010 CrossRefGoogle Scholar
  20. Maina JW, Pozo-Gonzalo C, Kong L, Schutz J, Hill M, Dumee LF (2017) Metal organic framework based catalysts for CO2 conversion. Mater Horizons 4(3):345–361. doi: 10.1039/C6MH00484A CrossRefGoogle Scholar
  21. McMullan G et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87. doi: 10.1007/s002530000587 CrossRefGoogle Scholar
  22. Mohaghegh N, Kamrani S, Tasviri M, Elahifard M, Gholami M (2015) Nanoporous Ag2O photocatalysts based on copper terephthalate metal–organic frameworks. J Mater Sci 50:4536–4546. doi: 10.1007/s10853-015-9003-3 CrossRefGoogle Scholar
  23. Mondal A, Adhikary B, Mukherjee D (2015) Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation. Colloids Surf A 482:248–257. doi: 10.1016/j.colsurfa.2015.05.011 CrossRefGoogle Scholar
  24. Reife A, Reife A, Freeman HS (1996) Environmental chemistry of dyes and pigments. John Wiley & Sons ISBN: 978-0-471-58927-3Google Scholar
  25. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Springer, Kolloidchemie Ein Lehrbuch, pp 387–409Google Scholar
  26. Senthil Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M (2014) Diamondoid-structured Cu–dicarboxylate-based metal–organic frameworks as high-capacity anodes for lithium-ion storage. Energy Technol 2:921–927. doi: 10.1002/ente.201402076 CrossRefGoogle Scholar
  27. Shu QW, Lan J, Gao MX, Wang J, Huang CZ (2015) Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm 17:1374–1380. doi: 10.1039/C4CE02120G CrossRefGoogle Scholar
  28. Zonouzi A, Afjei S, Rahmani A, Ng S (2016) Novel synthesis of some 2-aminochromene derivatives using nano-sized zirconium oxide as catalyst. Org Prep Proced Int 48:45–54. doi: 10.1080/00304948.2016.1127099 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.School of Chemistry, University College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran
  3. 3.Pharmaceutical and Cosmetic Research Center (PCRC)University of TehranTehranIran

Personalised recommendations