Advertisement

Chemical Papers

, Volume 72, Issue 1, pp 109–118 | Cite as

Extraction of V(V) and Cr(VI) from aqueous solution using primary amine extractants: extraction mechanism and oxidation of extractants

  • Xiaohua Jing
  • Jianyou WangEmail author
  • Hongbin Cao
  • Pengge NingEmail author
  • Qingjie Wang
Original Paper

Abstract

The extraction mechanism and the oxidation of extractants are essential to optimize the extraction process. To investigate the two problems for selective extraction of V(V) and Cr(VI), the extraction complexes of V(V) and Cr(VI) formed in the process of extraction with primary amines were obtained by solvent-out crystallization, respectively. The average compositions of the extraction complexes were determined by element analysis, X-ray photoelectron spectroscopy, and inductive couple plasma-optical emission spectrometry. The chemical functional groups of the extraction complexes were confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy. The structures of the extraction complexes of V(V) were speculated with their functional groups and average compositions. The hydrogen bond association mechanism of V(V) extraction was illustrated with the structure of the complexes, and the oxidation reaction of extractants with Cr(VI) was also demonstrated. According to the oxidation reaction of extractants with Cr(VI) and experiment conditions for the initial pH value, the optimized operation condition of the initial pH value ≥5.5 was determined to prevent the oxidation of extractants. The interaction of V(V) and Cr(VI) for the vanadium extraction and extractant oxidation was also investigated.

Graphical Abstract

Keywords

Extraction complexes V(V) and Cr(VI) Primary amine extractants Extraction mechanism Oxidation reaction 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation (Grant no. 51425405) and Youth Innovation Promotion Association, CAS (no. 2016042).

References

  1. Ball JW, Nordstrom DK (1998) Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J Chem Eng Data 43(6):895–918. doi: 10.1021/je980080a CrossRefGoogle Scholar
  2. Cao Y, Xing H, Yang Q, Su B, Bao Z, Zhang R, Yang Y, Ren Q (2012) High performance separation of sparingly aqua-/lipo-soluble bioactive compounds with an ionic liquid-based biphasic system. Green Chem 14(9):2617–2625. doi: 10.1039/C2GC35614G CrossRefGoogle Scholar
  3. Chagnes A, Fosse C, Courtaud B, Thiry J, Cote G (2011) Chemical degradation of trioctylamine and 1-tridecanol phase modifier in acidic sulfate media in the presence of vanadium (V). Hydrometallurgy 105(3–4):328–333. doi: 10.1016/j.hydromet.2010.11.003 CrossRefGoogle Scholar
  4. Chen D, Zhao H, Hu G, Qi T, Yu H, Zhang G, Wang L, Wang W (2015) An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite. J Hazard Mater 294:35–40. doi: 10.1016/j.jhazmat.2015.03.054 CrossRefGoogle Scholar
  5. Cheraghi A, Ardakani MS, Alamdari EK, Fatmesari DH, Darvishi D, Sadrnezhaad SK (2015) Thermodynamics of vanadium (V) solvent extraction by mixture of D2EHPA and TBP. Int J Min Process 138:49–54. doi: 10.1016/j.minpro.2015.03.011 CrossRefGoogle Scholar
  6. Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A (2016) Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests. Waste Manage 49:455–461. doi: 10.1016/j.wasman.2015.12.002 CrossRefGoogle Scholar
  7. Guo Q, Gui L, Møller PJ, Binau K (1996) XPS, AES and LEED studies of Cu deposited on Cr2O3(0001) surfaces. Appl Surf Sci 92:513–518. doi: 10.1016/0169-4332(95)00287-1 CrossRefGoogle Scholar
  8. Jiang D, Song N, Liao S, Yu L, Ma J, Jia Q (2015) Study on the synergistic extraction of vanadium by mixtures of acidic organophosphorus extractants and primary amine N1923. Sep Purif Technol 156(Part 2):835–840. doi: 10.1016/j.seppur.2015.11.008 CrossRefGoogle Scholar
  9. Jing X, Ning P, Cao H, Sun Z, Wang J (2017a) Separation of V(V) and Cr(VI) in leaching solution using annular centrifugal contactors. Chem Eng J 315:373–381. doi: 10.1016/j.cej.2017.01.014 CrossRefGoogle Scholar
  10. Jing X, Ning P, Cao H, Wang J, Sun Z (2017b) High-performance recovery of vanadium(V) in leaching/aqueous solution by a reusable reagent-primary amine N1519. ACS Sustain Chem Eng 5(4):3096–3102. doi: 10.1021/acssuschemeng.6b02797 CrossRefGoogle Scholar
  11. Khan MI, Yohannes E, Doedens RJ, Golub VO, O’Connor CJ (2005) Templated synthesis of a chiral solid: synthesis and characterization of {Co(H2N(CH2)2NH2)3}[V3O9] H2O, containing a new type of chiral vanadium oxide chain. Inorg Chem Commun 8(9):841–845. doi: 10.1016/j.inoche.2005.06.009 CrossRefGoogle Scholar
  12. Largeron M (2013) Protocols for the catalytic oxidation of primary amines to imines. Eur J Org Chem 2013(24):5225–5235. doi: 10.1002/ejoc.201300315 CrossRefGoogle Scholar
  13. Li HY, Fang HX, Wang K, Zhou W, Zhao Y, Yan XM, Ge WS, Li WQ, Xie B (2015) Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching. Hydrometallurgy 156:124–135. doi: 10.1016/j.hydromet.2015.06.003 CrossRefGoogle Scholar
  14. Liu F, Ning PG, Cao HB, Zhang Y (2015) Measurement and modeling for vanadium extraction from the (NaVO3+H2SO4+H2O) system by primary amine N1923. J Chem Thermodyn 80:13–21. doi: 10.1016/j.jct.2014.08.011 CrossRefGoogle Scholar
  15. Liu Q, Li Y, Li W, Liang X, Zhang C, Liu H (2016) Efficient recovery of penicillin G by a hydrophobic ionic liquid. ACS Sustain Chem Eng 4(2):609–615. doi: 10.1021/acssuschemeng.5b00975 CrossRefGoogle Scholar
  16. Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135(1–3):280–295. doi: 10.1016/j.jhazmat.2005.11.075 CrossRefGoogle Scholar
  17. Navarro R, Guzman J, Saucedo I, Revilla J, Guibal E (2007) Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Manage 27(3):425–438. doi: 10.1016/j.wasman.2006.02.002 CrossRefGoogle Scholar
  18. Nekovář P, Schrötterová D (2000) Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT. Chem Eng J 79(3):229–233. doi: 10.1016/S1385-8947(00)00207-2 CrossRefGoogle Scholar
  19. Ning P, Cao H, Liu C, Li Y, Zhang Y (2009) Characterization and prevention of interfacial crud produced during the extraction of vanadium and chromium by primary amine. Hydrometallurgy 97(1–2):131–136. doi: 10.1016/j.hydromet.2009.01.007 CrossRefGoogle Scholar
  20. Ning P, Cao H, Lin X, Zhang Y (2013) The crud formation during the long-term operation of the V(V) and Cr(VI) extraction. Hydrometallurgy 137:133–139. doi: 10.1016/j.hydromet.2013.05.001 CrossRefGoogle Scholar
  21. Ning P, Lin X, Cao H, Zhang Y (2014) Selective extraction and deep separation of V(V) and Cr(VI) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21. Sep Purif Technol 137:109–115. doi: 10.1016/j.seppur.2014.08.033 CrossRefGoogle Scholar
  22. Ning P, Lin X, Wang X, Cao H (2016) High-efficient extraction of vanadium and its application in the utilization of the chromium-bearing vanadium slag. Chem Eng J 301:132–138. doi: 10.1016/j.cej.2016.03.066 CrossRefGoogle Scholar
  23. Real FJ, Acero JL, Benitez JF, Roldan G, Casas F (2016) Oxidation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol by persulfate activated by UV irradiation. J Chem Technol Biotechnol 91(4):1004–1011. doi: 10.1002/jctb.4670 CrossRefGoogle Scholar
  24. Ruben H, Olovsson I, Zalkin A, Templeton DH (1973) Sodium chromate tetrahydrate. Acta Crystallogr B 29(12):2963–2964. doi: 10.1107/S0567740873007831 CrossRefGoogle Scholar
  25. Tavakoli MR, Dreisinger DB (2014) Separation of vanadium from iron by solvent extraction using acidic and neutral organophosporus extractants. Hydrometallurgy 141:17–23. doi: 10.1016/j.hydromet.2013.10.008 CrossRefGoogle Scholar
  26. Tian X, Huo M, Bian B, Zuo Y, Ai S (2016) Phosphorus removal and recovery from polytetrahydrofuran wastewater by solventing-out crystallization. Desalination Water Treat 57(1):382–387Google Scholar
  27. Wang M, Chen B, Huang S, Wang X, Liu B, Ge Q, Xie S (2017) A novel technology for vanadium and chromium recovery from V–Cr-bearing reducing slag. Hydrometallurgy 171:116–122. doi: 10.1016/j.hydromet.2017.05.007 CrossRefGoogle Scholar
  28. Wu QH, Thißen A, Jaegermann W (2005) XPS and UPS study of Na deposition on thin film V2O5. Appl Surf Sci 252(5):1801–1805. doi: 10.1016/j.apsusc.2005.03.134 CrossRefGoogle Scholar
  29. Xian L, Tian G, Beavers CM, Teat SJ, Shuh DK (2016) Glutarimidedioxime: a complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing. Angew Chem Int Edit 55(15):4671–4673. doi: 10.1002/anie.201510712 CrossRefGoogle Scholar
  30. Yang X, Zhang Y, Bao S, Shen C (2016) Separation and recovery of vanadium from a sulfuric-acid leaching solution of stone coal by solvent extraction using trialkylamine. Sep Purif Technol 164:49–55. doi: 10.1016/j.seppur.2016.03.021 CrossRefGoogle Scholar
  31. Yoo JC, Shin YJ, Kim EJ, Yang JS, Baek K (2016) Extraction mechanism of lead from shooting range soil by ferric salts. Process Saf Environ 103(Part A):174–182. doi: 10.1016/j.psep.2016.07.002 CrossRefGoogle Scholar
  32. Zhang L, Xu D, Gao J, Zhou S, Zhao L, Zhang Z (2017) Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids. Fuel 194:27–35. doi: 10.1016/j.fuel.2016.12.095 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringNankai UniversityTianjinChina
  2. 2.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Beijing Engineering Research Centre of Process Pollution ControlChinese Academy of SciencesBeijingChina
  3. 3.BeijingChina
  4. 4.TianjinChina

Personalised recommendations