Advertisement

Chemical Papers

, Volume 71, Issue 12, pp 2473–2483 | Cite as

Identification of flavanones from Boesenbergia rotunda as potential antioxidants and monoamine oxidase B inhibitors

  • P. Ajmala Shireen
  • K. MuraleedharanEmail author
  • V. M. Abdul Mujeeb
Original Paper

Abstract

Boesenbergia rotunda is a ginger species with great medicinal importance. In this study, two flavanones found in B. rotunda namely pinocembrin and pinostrobin are analyzed for their antioxidant activity and monoamine oxidase inhibition. Frontier molecular orbitals and molecular electrostatic potential were analyzed to understand the electronic properties of these molecules. Quantum chemical descriptors gave an indication that these are potential antioxidant molecules. Mechanism of antioxidant activity was explored using Density Functional Theory (DFT) and was found to be hydrogen atom transfer (HAT) in the gaseous state and in non-polar medium and sequential proton loss and electron transfer (SPLET) in polar medium. Monoamine oxidase B (MAOB) is an important target in the treatment of Parkinson’s disease. Molecular docking studies conducted on these molecules show that they can dock well into the active site monoamine oxidase B. These molecules playing dual role as antioxidants and monoamine oxidase B inhibitors can be considered as good candidates for the treatment of Parkinson’s disease.

Keywords

Pinocembrin Pinostrobin Antioxidant DFT Flavanones MAO 

Abbreviations

DFT

Density functional theory

MEP

Molecular electrostatic potential

HOMO

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital

IP

Ionization potential

ETE

Electron transfer enthalpy

PA

Proton affinity

BDE

Bond dissociation energy

HAT

Hydrogen atom transfer

SET

Single electron transfer

SET-PT

Single-electron transfer followed by proton transfer

PDE

Proton dissociation enthalpy

SPLET

Sequential proton loss electron transfer

MAO

Monoamine oxidase

hMAO-B

Human monoamine oxidase B

MAOI

Maonoamine oxidase inhibitors

NMR

Nuclear magnetic resonance

Supplementary material

11696_2017_241_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Abdelwahab SI, Mohan S, Abdulla MA, Aspollah M, Sukari ABA, Taha MME, Syam S, Ahmad S (2011) The methanolic extract of Boesenbergia rotunda (L.) Mansf. and its major compound pinostrobin induces antiulcerogenic property in vivo: possible involvement of indirect antioxidant action. J Ethnopharmacol 137:963–970CrossRefGoogle Scholar
  2. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  3. Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98:6420CrossRefGoogle Scholar
  4. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  5. Bertelli D, Papotti G, Bortolotti L, Marcazzan GL, Plessi M (2012) 1H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochem Anal 23:260–266. doi: 10.1002/pca.1352 CrossRefGoogle Scholar
  6. Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A (2007) Structures of human monoamine oxidase b complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs Claudia. J Med Chem 50:5844–5852CrossRefGoogle Scholar
  7. Bizarro MM, Cabral BJC, dos Santos RMB, Simoes JAM (1999) Substituent effects on the O-H bond dissociation enthalpies in phenolic compounds: agreements and controversies + erratum. Pure Appl Chem 71:1249–1256CrossRefGoogle Scholar
  8. Burke B, Nair M (1986) Phenylpropene, benzoic acid and flavonoid derivatives from fruits of Jamaican Piper species. Phytochemistry 25:1427–1430. doi: 10.1016/S0031-9422(00)81303-5 CrossRefGoogle Scholar
  9. Carradori S, Silvestri R (2015) New frontiers in selective human MAO-B inhibitors. J Med Chem 58:6717–6732CrossRefGoogle Scholar
  10. Carradori S, D’Ascenzio M, Chimenti P, Secci D, Bolasco A (2014) Selective MAO-B inhibitors: a lesson from natural products. Mol Divers. 18:219–243CrossRefGoogle Scholar
  11. Carradori S, Gidaro MC, Petzer A, Costa G, Guglielmi P, Chimenti P, Alcaro S, Petzer JP (2016) Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J Agric Food Chem 64:9004–9011. doi: 10.1021/acs.jafc.6b03529 CrossRefGoogle Scholar
  12. Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, Gen-Teck F, Khalid N, Abd Rahman N, Karsani SA, Othman S, Othman R, Yusof R (2012) Boesenbergia rotunda: from ethnomedicine to drug discovery. Evid Based Complement Altern Med. doi: 10.1155/2012/473637 Google Scholar
  13. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New YorkGoogle Scholar
  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Eha M, and Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  15. Gidaro MC, Astorino C, Petzer§ A, Carradori S, Alcaro F, Costa G, Artese A, Rafele G, Russo FM, Petzer JP, Alcaro S (2016) Kaempferol as selective human MAO-A Inhibitor: analytical Detection in Calabrian Red Wines, biological and molecular modeling studies. J Agric Food Chem 64:1394–1400CrossRefGoogle Scholar
  16. Glossman-Mitnik D (2013) A comparison of the chemical reactivity of naringenin calculated with the M06 family of density functionals. Chem Cent J 7:7. doi: 10.1186/1752-153x-7-155 CrossRefGoogle Scholar
  17. Guanhua DU, Yang LV, Song WU, Ke W, Ying C, Zhihong Y, Yuanfeng B, Mei G (2011) No Title. Eur Patent Specif Patent 08878072:1Google Scholar
  18. Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG (2014) Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta 1842:1282–1294. doi: 10.1016/j.bbadis.2013.09.007 CrossRefGoogle Scholar
  19. Laskowski R, Swindells M (2011) LigPlot+ : multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786CrossRefGoogle Scholar
  20. Le Bail J-C, Aubourg L, Habrioux G (2000) Effects of pinostrobin on estrogen metabolism and estrogen receptor transactivation. Cancer Lett 156:37–44. doi: 10.1016/S0304-3835(00)00435-3 CrossRefGoogle Scholar
  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  22. Lee MH, Lin RD, Shen LY, Yang LL, Yen KY, Hou WC (2001) Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don J Agric Food Chem 49:5551–5555. doi: 10.1021/jf010622j CrossRefGoogle Scholar
  23. Liu Y, Ho DK, Cassady JM (1992) Isolation of potential cancer chemopreventive agents from Eriodictyon californicum. J Nat Prod 55:357–363CrossRefGoogle Scholar
  24. Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s Disease. Oxid Med Cell Longev. 2015:314560. doi: 10.1155/2015/314560 CrossRefGoogle Scholar
  25. Mariappan G, Sundaraganesan N, Manoharan S (2012) Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory. Spectrochim Acta A Mol Biomol Spectrosc 97:340–351. doi: 10.1016/j.saa.2012.06.011 CrossRefGoogle Scholar
  26. Mazzone G, Toscano M, Russo N (2013) Density functional predictions of antioxidant activity and UV spectral features of nasutin A, isonasutin, ellagic acid, and one of its possible derivatives. J Agric Food Chem 61:9650–9657. doi: 10.1021/jf403262k CrossRefGoogle Scholar
  27. Mendoza-Wilson AM, Glossman-mitnik D (2005) CHIH-DFT study of the electronic properties and chemical reactivity of quercetin. J Mol Struct Theochem 716:67–72CrossRefGoogle Scholar
  28. Mendoza-Wilson AM, Glossman-Mitnik D (2006) Theoretical study of the molecular properties and chemical reactivity of (+)-catechin and (-)-epicatechin related to their antioxidant ability. J Mol Struct (Theochem) 761:97–106. doi: 10.1016/j.theochem.2006.01.001 CrossRefGoogle Scholar
  29. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison cr (2011) Open babel: an open chemical toolbox. J Cheminf 3:33CrossRefGoogle Scholar
  30. Parker VD (1992) Homolytic bond (H-A) dissociation free energies in solution. Applications of the standard potential of the (H +/H.bul.) couple. J Am Chem Soc 114:7458–7462CrossRefGoogle Scholar
  31. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. doi: 10.1021/ja00364a005 CrossRefGoogle Scholar
  32. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  33. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. doi: 10.1021/ja983494x CrossRefGoogle Scholar
  34. Rimarcik J, Lukes V, Klein E, Ilcin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J Mol Struct (Theo-Chem) 952:25–30CrossRefGoogle Scholar
  35. Robakis D, Fahn S (2015) Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s Disease. CNS Drugs 29:433–441. doi: 10.1007/s40263-015-0249-8 CrossRefGoogle Scholar
  36. Rojas RJ, Edmondson DE, Almos T, Scott R, Massari ME (2015) Reversible and irreversible small molecule inhibitors of monoamine oxidase B (MAO-B) investigated by biophysical techniques. Bioorgan Med Chem 23:770–778. doi: 10.1016/j.bmc.2014.12.063 CrossRefGoogle Scholar
  37. Sadasivam K, Kumaresan R (2011a) A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds. Mol Phys 109:839–852. doi: 10.1080/00268976.2011.556576 CrossRefGoogle Scholar
  38. Sadasivam K, Kumaresan R (2011b) Antioxidant behavior of mearnsetin and myricetin flavonoid compounds—A DFT study. Spectrochim Acta A Mol Biomol Spectrosc 79:282–293. doi: 10.1016/j.saa.2011.02.042 CrossRefGoogle Scholar
  39. Shindo K, Kato M, Kinoshita A, Kobayashi A, Koike Y (2006) Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. Rhizome. Biosci. Biotechnol. Biochem. 70:2281–2284. doi: 10.1271/bbb.60086 CrossRefGoogle Scholar
  40. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461Google Scholar
  41. Turkmenoglu FP, Baysal I, Ciftci-Yabanoglu S, Yelekci K, Temel H, Paşa S, Ezer N, Çaliş I, Ucar G (2015) Flavonoids from sideritis species: human monoamine oxidase (hMAO) inhibitory activities, molecular docking studies and crystal structure of xanthomicrol. Molecules 20:7454–7473. doi: 10.3390/molecules20057454 CrossRefGoogle Scholar
  42. Vargas-Sánchez RD, Mendoza-Wilson AM, Balandrán-Quintana RR, Torrescano-Urrutia GR, Sánchez-Escalante A (2015) Study of the molecular structure and chemical reactivity of pinocembrin by DFT calculations. Comput Theor Chem 1058:21–27. doi: 10.1016/j.comptc.2015.01.014 CrossRefGoogle Scholar
  43. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analy- sis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183CrossRefGoogle Scholar
  44. Yang Q, Tong Y, Chen F, Qi Y, Li W, Wu S (2012) Identification and synthesis of impurities in pinocembrin—a new drug for the treatment of ischemic stroke. Chin J Chem 30:1315CrossRefGoogle Scholar
  45. Young D (2001) Computational chemistry: a practical guide for applying techniques to real world problems. Wiley, New YorkCrossRefGoogle Scholar
  46. Yusuf NA, Suffian M, Annuar M, Khalid N (2013) Existence of bioactive flavonoids in rhizomes and plant cell cultures of Boesenbergia rotunda (L.) Mansf. Kulturpfl Aust J Crop Sci 7:730–734Google Scholar
  47. Zarmouh NO, Mazzio EA, Elshami FM, Messeha SS, Eyunni SVK, Soliman KFA (2015) Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B. Evid Based Compl Alternat Med 2015:852194. doi: 10.1155/2015/852194 Google Scholar
  48. Zarmouh NO, Messeha SS, Elshami FM, Soliman KFA (2016) Evaluation of the isoflavone genistein as reversible human monoamine oxidase-A and -B inhibitor. Evid Based Compl Altern Med 2016:1423052. doi: 10.1155/2016/1423052 Google Scholar
  49. Zhang J, Xiong Y, Peng B, Gao H, Zhou Z (2011) Density functional study on the bioactivity of ellagic acid, its derivatives and metabolite. Comput Theor Chem 963:148–153. doi: 10.1016/j.comptc.2010.10.021 CrossRefGoogle Scholar
  50. Zhou S-Y, Ma S-X, Cheng H-L, Yang L-J, Chen W, Yin Y-Q, Shi Y-M, Yang X-D (2014) Host–guest interaction between pinocembrin and cyclodextrins: characterization, solubilization and stability. J Mol Struct 1058:181–188. doi: 10.1016/j.molstruc.2013.11.008 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations