Chemical Papers

, Volume 72, Issue 4, pp 829–839 | Cite as

Dispersion interactions in oligomerization of metal diketonates: a DFT evaluation

  • Andrey G. Starikov
  • Dmitrii G. Ivanov
  • Alyona A. Starikova
  • Vladimir I. Minkin
Original Paper
  • 61 Downloads

Abstract

The structures of the oligomers of Co(II), Ni(II), Cu(II) and Zn(II) β-diketonates and their stability with respect to dissociation into the monomeric components were studied with the use of density functional theory [DFT B3LYP/6-311++G(d,p)] method taking additionally into account corrections for dispersion interactions in CAM and D3BJ approximations. The calculated geometries of the oligomers well match those experimentally determined, but stabilization energies obtained at the B3LYP-CAM and B3LYP-D3BJ approximations are significantly overestimated.

Keywords

Transition metals diketonates Oligomerization Dispersion interactions DFT calculations 

Notes

Acknowledgements

This work has been performed in the framework of State Assignment of the Ministry of Education and Science of the Russian Federation (Project No. 4.1774.2017/4.6).

Supplementary material

11696_2017_225_MOESM1_ESM.doc (631 kb)
Electronic Supplementary Material associated with this article (details of the DFT 363 calculations, including optimized geometries and energy parameters of Co, Ni, Cu and Zn bis-364 diketonates) can be found in the online version of this paper (DOI: 10.1007/s11696-017-0225-5) (DOC 631 kb)

References

  1. Ang LT, Graddon DP (1973) Thermodynamics of metal-ligand bond formation VI. Trimerization and base addition of nickel(II) 8-diketonates. Aust J Chem 26(9):1901–1910. doi: 10.1071/CH9731901 CrossRefGoogle Scholar
  2. Antina EV, Belova NV, Berezin MB, Girichev GV, Giricheva NI, Zakharov AV, Petrova AA, Shlykov SA (2010) Structure and energetics of β-diketonates. XVI. Molecular structure and vibrational spectrum of zinc acetylacetonate according to gas-phase electron diffraction and quantum-chemical calculations. J Struct Chem 50(6):1035–1045. doi: 10.1007/s10947-009-0153-5 CrossRefGoogle Scholar
  3. Aromí G, Gamez P, Reedijk J (2008) Poly beta-diketones: prime ligands to generate supramolecular metalloclusters. Coord Chem Rev 252(8–9):964–989. doi: 10.1016/j.ccr.2007.07.008 CrossRefGoogle Scholar
  4. Baidina IA, Gromilov SA (1991) Crystal structure of the mixed-ligand complex (hexafluoroacetylacetonato)(benzoylacetonato)copper(II). J Struct Chem 32:395–398. doi: 10.1007/BF00745754 CrossRefGoogle Scholar
  5. Baisch U, Poli R (2008) Copper(I/II) and cobalt(II) coordination chemistry of relevance to controlled radical polymerization processes. Polyhedron 27(9–10):2175–2185. doi: 10.1016/j.poly.2008.03.022 CrossRefGoogle Scholar
  6. Bennett MJ, Cotton FA, Eiss R (1968) The crystal and molecular structure of trimeric bis(acetylacetonato)zinc(II). Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 24:904–913. doi: 10.1107/S0567740868003390 CrossRefGoogle Scholar
  7. Bullen GJ, Mason R, Pauling P (1965) The crystal and molecular structure of bis(acetylacetonato)nickel(II). Inorg Chem 4:456–462. doi: 10.1021/ic50026a005 CrossRefGoogle Scholar
  8. Burgess J, Fawcett J, Russell DR, Gilani SR (2000) Monomeric bis(2,4-pentanedionato)cobalt(II). Acta Cryst Sect C Cryst Struct Commun 56(6):649–650. doi: 10.1107/S0108270100003176 CrossRefGoogle Scholar
  9. Burgess J, Fawcett J, Russell DR (2011) Erratum: Bis(2,4-penta-nedionato)cobalt(II) [Acta Crystallographica Section C: Crystal Structure Communications (2000) C56 (649–650)]. Acta Crystallogr Sect C Cryst Struct Commun 67(6):e13. doi: 10.1107/S0108270111014077 CrossRefGoogle Scholar
  10. Claisen L, Ehrhardt EF (1889) Über die Darstellung des Acetylacetons und seiner Homologen. Chem Ber 22:1009–1019. doi: 10.1002/cber.188902201220 CrossRefGoogle Scholar
  11. Colquhoun HM, Holton J, Thompson DJ, Twigg MV (1984) New pathways for organic synthesis—practical applications of transition metals. Plenum, New YorkGoogle Scholar
  12. Condorelli GG, Malandrino G, Fragalà IL (2007) Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. Coord Chem Rev 251(13–14):1931–1950. doi: 10.1016/j.ccr.2007.04.016 CrossRefGoogle Scholar
  13. Cotton FA, Elder RC (1964) The tetrameric structure of anhydrous, crystalline cobalt(II) acetylacetonate. J Am Chem Soc 86(11):2294–2295. doi: 10.1021/ja01065a044 CrossRefGoogle Scholar
  14. Cotton FA, Elder RC (1965) Crystal structure of tetrameric cobalt(II) acetylacetonate. Inorg Chem 4:1145–1151. doi: 10.1021/ic50030a012 CrossRefGoogle Scholar
  15. Cotton FA, Elder RC (1966) The crystal and molecular structure of dimeric bis(acetylacetonato)aquocobalt(II) and the preparation of some other new hydrates. Inorg Chem 5:423–429. doi: 10.1021/ic50037a020 CrossRefGoogle Scholar
  16. Cotton FA, Soderberg RH (1962) Absorption intensities and electronic structures of tetrahedral cobalt(II) Complexes. J Am Chem Soc 84(5):872–873. doi: 10.1021/ja00864a045 CrossRefGoogle Scholar
  17. Cotton FA, Soderberg RH (1964) A spectroscopic study of the polymeric nature of bis(acetylacetonato)cobalt(II). Inorg Chem 3:1–5. doi: 10.1021/ic50011a001 CrossRefGoogle Scholar
  18. Cotton FA, Wood JS (1964) The crystal and molecular structure of bis(dipivaloylmethanido)zinc(II). Inorg Chem 3:245–251. doi: 10.1021/ic50012a024 CrossRefGoogle Scholar
  19. Cotton FA, Liu CY, Murillo CA, Wang X (2003) Trapping tetramethoxyzincate and -cobaltate(II) between Mo24+ units. Inorg Chem 42:4619–4623. doi: 10.1021/ic034167f CrossRefGoogle Scholar
  20. Dikarev EV, Zhang H, Li B (2005) Heterometallic bismuth-transition metal homoleptic β-diketonates. J Am Chem Soc 127:6156–6157. doi: 10.1021/ja051265m CrossRefGoogle Scholar
  21. Doppelt P (1998) Why is coordination chemistry stretching the limits of micro-electronics technology? Coord Chem Rev 178–180:1785–1809. doi: 10.1016/S0010-8545(98)00087-3 CrossRefGoogle Scholar
  22. Fedin MV, Veber SL, Bagryanskaya EG, Ovcharenko VI (2015) Electron paramagnetic resonance of switchable copper-nitroxide-based molecular magnets: an indispensable tool for intriguing systems. Coord Chem Rev 289–290(1):341–356. doi: 10.1016/j.ccr.2014.11.015 CrossRefGoogle Scholar
  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2013) Gaussian 09. Revision E.01. Gaussian Inc., Wallingford CTGoogle Scholar
  24. Gach F (1900) Zur Kenntniss des acetylacetons. Monatsh Chem 21:98–117. doi: 10.1007/BF01526814 CrossRefGoogle Scholar
  25. Graddon DP, Nyein TT (1974) Thermodynamics of metal–ligand bond formation. IX. Trimerization and base addition of bis(2,6-dimethylheptane-3,5-dionato)nicke1(II). Aust J Chem 27(2):407–411. doi: 10.1071/CH9740407 CrossRefGoogle Scholar
  26. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comp Chem 32:1456–1465. doi: 10.1002/jcc.21759 CrossRefGoogle Scholar
  27. Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, Chichester. doi: 10.1002/9781118519301 Google Scholar
  28. Holm RH, Cotton FA (1958a) Spectral investigations of metal complexes of β-diketones. I. Nuclear magnetic resonance and ultraviolet spectra of acetylacetonates. J Am Chem Soc 80(21):5658–5663. doi: 10.1021/ja01554a020 CrossRefGoogle Scholar
  29. Holm RH, Cotton FA (1958b) Spectral investigations of metal complexes of β-diketones. I. nuclear magnetic resonance and ultraviolet spectra of acetylacetonates. J Am Chem Soc 80(21):5658–5663. doi: 10.1021/ja01554a020 CrossRefGoogle Scholar
  30. Hübner A, Strobusch D, Lerner H-W, Bolte M (2008) The twinned crystal structure of zinc(II) acetylacetonate trimer. J Chem Cryst 38:953–957. doi: 10.1007/s10870-008-9422-y CrossRefGoogle Scholar
  31. Hujo W, Grimme S (2013) Performance of non-local and atom-pairwise dispersion corrections to DFT for structural parameters of molecules with noncovalent interactions. J Chem Theory Comput 9:308–315. doi: 10.1021/ct300813c CrossRefGoogle Scholar
  32. Hursthouse MB, Laffey MA, Moore PT, New DB, Raithby PR, Thornton P (1982) Crystal and molecular structures of some binuclear complexes of cobalt(II) and nickel(II) acetylacetonates with pyridines and piperidine and a refinement of the crystal and molecular structure of hexakis-(acetylacetonato)trinickel(II). J Chem Soc Dalton Trans. doi: 10.1039/DT9820000307 Google Scholar
  33. Irving RJ, Ribeiro de Silva AV (1978) Standard enthalpies of formation of tris[bis(pentane-2,4-dionato)nickel(II)] and bis(2,2,6,6-tetramethylheptane-3,5-dionato)nickel(II) and an estimation of nickel-oxygen bond energies. J Chem Soc Dalton Trans 5:399–402. doi: 10.1039/DT9780000399 CrossRefGoogle Scholar
  34. Jacobsen H, Cavallo L (2012) On the accuracy of DFT methods in reproducing ligand substitution energies for transition metal complexes in solution: the role of dispersive interactions. ChemPhysChem 13:562–569. doi: 10.1002/cphc.201100705 CrossRefGoogle Scholar
  35. Kessler VG, Gohil S, Parola S (2003) Interaction of some divalent metal acetylacetonates with Al, Ti, Nb and Ta isopropoxides. Factors influencing the formation and stability of heterometallic alkoxide complexes. Dalt Trans. doi: 10.1039/B206662A Google Scholar
  36. Le Brun PC, Lyon WD, Kuska HA (1986) Effects of mixed-ligand complexation on the geometry of copper(II) complexes. X-ray study of (hexafluoroacetylacetonato) (acetylacetonato)copper(II). Inorg Chem 25:3106–3108. doi: 10.1021/ic00237a039 CrossRefGoogle Scholar
  37. Lebrun PC, Lyon WD, Kuska HA (1986) Crystal structure of bis(2,4-pentanedionato)copper(II). J Crystallogr Spectrosc Res 16:889–893. doi: 10.1007/BF01188194 CrossRefGoogle Scholar
  38. Lieberman CM, Filatov AS, Wei Z, Rogachev AYu, Abakumov AM, Dikarev EV (2015) Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. Chem Sci 6(5):2835–2842. doi: 10.1039/C4SC04002C CrossRefGoogle Scholar
  39. Mehrotra RC, Bohra R, Gaur DP (1978) Metal beta-diketonates and allied derivatives. Academic Press, LondonGoogle Scholar
  40. Minkin VI, Starikova AA (2015) Molecular design of valence tautomeric mixed-ligand adducts of CoII diketonates with redox-active ligands. Mendeleev Comm 25(2):83–92. doi: 10.1016/j.mencom.2015.03.002 CrossRefGoogle Scholar
  41. Minkin VI, Starikova AA, Starikov AG (2015a) Valence tautomeric dinuclear adducts of Co(II) diketonates with redox-active diquinones for the design of spin qubits: computational modeling. Dalton Trans 44(4):1982–1991. doi: 10.1039/C4DT03053B CrossRefGoogle Scholar
  42. Minkin VI, Starikov AG, Starikova AA (2015b) Theoretical modeling of valence tautomeric dinuclear cobalt complexes. Adducts of CoII diketonates with cyclic redox-active tetraone ligands. Dalton Trans 44(40):17819–17828. doi: 10.1039/c5dt02609a CrossRefGoogle Scholar
  43. Minkin VI, Starikova AA, Starikov AG (2016) Quantum chemical modeling of magnetically bistable metal coordination compounds Synchronization of spin crossover, valence tautomerism and charge transfer induced spin transition mechanisms. Dalton Trans 45(30):12103–12113. doi: 10.1039/c6dt01687a CrossRefGoogle Scholar
  44. Mutter ST, Platts JA (2010) Modulation of stacking interactions by transition-metal coordination: ab Initio Benchmark Studies. Chem Eur J 16:5391–5399. doi: 10.1002/chem.200902813 CrossRefGoogle Scholar
  45. Pandey KK, Patidar SK, Vishwakarma R (2015) Theoretical insights into M–SO bonds in transition metal–sulfur monoxide complexes [{N(SPMe2)2}2 M(SO)] (M = Fe, Ru, Os): assessment of density functionals and dispersion interactions. Polyhedron 101:230–238. doi: 10.1016/j.poly.2015.09.029 CrossRefGoogle Scholar
  46. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University, IthacaGoogle Scholar
  47. Petersson MR, Wahl GH (1972) Lanthanide nmr shift reagents. J Chem Educ 49:790–793. doi: 10.1021/ed049p790 CrossRefGoogle Scholar
  48. Pinkas J, Huffman JC, Bollinger JC, Streib WE, Baxter DV, Chisholm MH, Caulton KG (1997) Syntheses, structures, and thermal behavior of Cu(hfacac) complexes derived from ethanolamines. Inorg Chem 36:2930–2937. doi: 10.1021/ic960370h CrossRefGoogle Scholar
  49. Shibata S (1957) Studies on the molecular structure of bisacetylacetone-nickel(II) by electron diffraction. Bull Chem Soc Jpn 30:753–760. doi: 10.1246/bcsj.30.753 CrossRefGoogle Scholar
  50. Shibata S, Ohta M, Tani R (1981) Molecular structure of bis(acetylacetonato)nickel(II) in the gas phase as determined from electron diffraction data. J Mol Struct 73(1):119–124. doi: 10.1016/0022-2860(81)85054-5 CrossRefGoogle Scholar
  51. Sliznev VV, Belova NV, Girichev GV (2010) An ab initio study of the electronic and geometric structure of bis-of dipivaloylmethane with manganese, iron, and cobalt. J Struct Chem 51(4):622–634. doi: 10.1007/s10947-010-0092-1 CrossRefGoogle Scholar
  52. Soldatov DV, Henegouwen AT, Enright GD, Ratcliffe CI, Ripmeester JA (2001) Nickel(II) and zinc(II) dibenzoylmethanates: molecular and crystal structure, polymorphism, and guest- or temperature-induced oligomerization. Inorg Chem 40:1626–1636. doi: 10.1021/ic000981g CrossRefGoogle Scholar
  53. Spencer JT (1994) Chemical vapor deposition of metal-containing thin film materials from organometallic compounds. Prog Inorg Chem 41(3):145–237. doi: 10.1002/9780470166420.ch3 Google Scholar
  54. Starikov AG, Minyaev RM, Minkin VI (2008) Theoretical modeling of the square-planar to tetrahedral isomerization of bis-chelate nickel(II) complexes. Chem Phys Lett 459(1–6):27–32. doi: 10.1016/j.cplett.2008.04.132 CrossRefGoogle Scholar
  55. Starikova ZA, Shugam EA (1969) Crystal chemical data for inner complexes of β-diketones V. Refinement of the structure of copper acetylacetonate. Zh Strukt Khim 10(2):267–269. doi: 10.1007/BF00745792 Google Scholar
  56. Starikova AA, Starikov AG, Minkin VI (2015) Tetranuclear Cu(II) and Ni(II) complexes with 1,3,5-Triketone Ligands: a quantum-chemical simulation of exchange interactions. Russ J Coord Chem 41(8):487–495. doi: 10.1134/S1070328415080060 CrossRefGoogle Scholar
  57. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) State of the art in counterpoise theory. Chem Rev 94(7):1873–1885. doi: 10.1021/cr00031a007 CrossRefGoogle Scholar
  58. Vigato PA, Peruzzo V, Tamburini S (2009) The evolution of β-diketone or β-diketophenol ligands and related complexes. Coord Chem Rev 253(7–8):1099–1201. doi: 10.1016/j.ccr.2008.07.013 CrossRefGoogle Scholar
  59. Vreshch VD, Yang J-H, Zhang H, Filatov AS, Dikarev EV (2010) Monomeric square-planar cobalt(II) acetylacetonate: mystery or mistake? Inorg Chem 49:8430–8434. doi: 10.1021/ic100963r CrossRefGoogle Scholar
  60. Wang L-C, Jang H-Y, Roh Y, Lynch V, Schultz AJ, Wang X, Krische MJ (2002) Diastereoselective cycloreductions and cycloadditions catalyzed by Co(dpm)2-Silane (dpm = 2,2,6,6-tetramethylheptane-3,5-dionate): mechanism and partitioning of hydrometallative versus anion radical pathways. J Am Chem Soc 124:9448–9453. doi: 10.1021/ja020223k CrossRefGoogle Scholar
  61. Wentzel BB, Gosling PA, Feiters MC, Nolte RJM (1998) Mechanistic studies on the epoxidation of alkenes with molecular oxygen and aldehydes catalysed by transition metal–β-diketonate complexes. J Chem Soc Dalton Trans. doi: 10.1039/A801175C Google Scholar
  62. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi: 10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  63. Zhang H, Li B, Sun J, Clerac R, Dikarev EV (2008) Fluorinated β-diketonates of the first row divalent transition metals: new approach to the synthesis of unsolvated species. Inorg Chem 47:10046–10052. doi: 10.1021/ic801320p CrossRefGoogle Scholar
  64. Zhurko GA, Zhurko DA (2013) Chemcraft 1.7. http://www.chemcraftprog.com. Accessed 1 Apr 2016

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Andrey G. Starikov
    • 1
  • Dmitrii G. Ivanov
    • 1
  • Alyona A. Starikova
    • 1
  • Vladimir I. Minkin
    • 1
  1. 1.Institute of Physical and Organic Chemistry at Southern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations